
  

AFRL-IF-RS-TR-2005-188 
Final Technical Report 
May 2005 
 
 
 
 
 
 
DYNAMIC CONTROL AND FORMAL MODELS OF 
MULTI-AGENT INTERACTIONS AND BEHAVIORS 
  
BAE Systems Advanced Information Technologies 
 
  
Sponsored by 
Defense Advanced Research Projects Agency 
DARPA Order No. K542 
  
 
 
 
 
 
 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 
 

The views and conclusions contained in this document are those of the authors and should not be 
interpreted as necessarily representing the official policies, either expressed or implied, of the 
Defense Advanced Research Projects Agency or the U.S. Government. 
 
 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

ROME RESEARCH SITE 
ROME, NEW YORK 

 



  

STINFO FINAL REPORT 
 
 
 This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS).  At NTIS it will be releasable to the general public, 
including foreign nations. 
 
 
 AFRL-IF-RS-TR-2005-188 has been reviewed and is approved for publication 
 
 
 
 
 
 
 
APPROVED:         /s/ 
 

JAMES M. NAGY 
Project Engineer 

 
 
 
 
 
 
 FOR THE DIRECTOR:           /s/ 
 

JOSEPH CAMERA, Chief  
  Information & Intelligence Exploitation Division 
Information Directorate 

 
 
 
 
 
 
 
 



  

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 074-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302, 
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE
MAY 2005

3. REPORT TYPE AND DATES COVERED 
Final  Jun 00 – Jan 05 

4. TITLE AND SUBTITLE 
DYNAMIC CONTROL AND FORMAL MODELS OF MULTI-AGENT 
INTERACTIONS AND BEHAVIORS 
 

6. AUTHOR(S) 
Larry Roszman, Derek Armstrong, 
Aram Khalali and Gwen Hickling 
 

5.  FUNDING NUMBERS 
C     - F30602-00-C-0182 
PE   - 62301E  
PR   - TASK 
TA   -  00 
WU  -  01 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
BAE Systems Advanced Information Technologies 
3865 Wilson Road, Suite 600 
Arlington Virginia 22203 
 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
 

N/A 

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Defense Advanced Research Projects Agency   AFRL/IFED 
3701 North Fairfax Drive                                     525 Brooks Road 
Arlington Virginia 22203-1714                             Rome New York 13441-4505 

10. SPONSORING / MONITORING 
      AGENCY REPORT NUMBER 
 

AFRL-IF-RS-TR-2005-188 
 

11. SUPPLEMENTARY NOTES 
 
AFRL Project Engineer:  James M. Nagy/IFED/(315) 330-3173/ James.Nagy@rl.af.mil 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 

12b. DISTRIBUTION CODE 
 
 

13. ABSTRACT (Maximum 200 Words) 
New Multi-Agent System (MAS) approaches to complex DoD problems hold the promise of previously unrealized levels 
of autonomy, adaptability, and flexibility of agent-controlled systems. These systems will provide essential capabilities in 
command and control, surveillance, automated targeting and weapons delivery, and biochem monitoring. 
BAE SYSTEMS Advanced Information Technologies' work focused on three areas. First was the development of the 
Open Experimentation Framework to facilitate research, evaluation, and characterization of the emerging science of 
Multi-Agent Systems. Second was the design and facilitation of a project-wide demonstration in which all Principal 
Investigators participate. Third was our theoretical research into cooperative and adaptive methods for multi-agent 
systems to service asynchronously appearing popup tasks. 
 

15. NUMBER OF PAGES
51

14. SUBJECT TERMS  
Multi-Agent Systems, Agent-Based Computing, Cooperation, Adaptation, Scientific And 
Mathematical Foundations, Autonomous Operation, UAV 16. PRICE CODE

17. SECURITY CLASSIFICATION 
     OF REPORT 
 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
     OF THIS PAGE 
 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
     OF ABSTRACT 
 

UNCLASSIFIED 

20. LIMITATION OF 
ABSTRACT 

 
UL 

NSN 7540-01-280-5500   Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 



 

 

 

i

 
Table of Contents 

 
1 INTRODUCTION..............................................................................................................................................1 

1.1 OBJECTIVES AND ACCOMPLISHMENTS ...........................................................................................2 
2 THE OPEN EXPERIMENTATION FRAMEWORK (OEF)........................................................................4 

3 MULTI-AGENT SYSTEM (MAS) RESEARCH............................................................................................9 
3.1 STARVATION AND WAITING TIMES FOR A DISTRIBUTED AND DYNAMIC VEHICLE ROUTING PROBLEM ......9 

3.1.1 Introduction ...........................................................................................................................................9 
3.1.2 Problem Formulation and Approach...................................................................................................15 
3.1.3 Distributed Task Scheduling with Real-Time Optimization.................................................................19 
3.1.4 Discussion of Analytical Results ..........................................................................................................25 
3.1.5 Conclusion and Future Directions.......................................................................................................29 
3.1.6 References............................................................................................................................................31 

4 THE TASK PROJECT WIDE DEMONSTRATION...................................................................................33 
4.1 ORGANIZATION OF THE DEMONSTRATION.................................................................................................34 
4.2 THE MILITARY SCENARIO FOR THE TASK OEF DEMONSTRATION ...........................................................35 

4.2.1 The Area of Operations........................................................................................................................36 
4.2.2 Reconnaissance and Surveillance Targets...........................................................................................37 
4.2.3 Communications ..................................................................................................................................37 
4.2.4 Unattended Ground Sensor Networks..................................................................................................38 
4.2.5 The Scenario Timeline .........................................................................................................................38 
4.2.6 Disruptive Events.................................................................................................................................39 

5 THE BAE SYSTEMS ADVANCED INFORMATION TECHNOLOGIES DEMONSTRATION..........41 
5.1 OVERVIEW OF THE AIT HARDWARE-BASED DEMONSTRATION .................................................................41 

 



 

 

 

ii

LIST OF FIGURES 
 
 
FIGURE 1: THE PROBLEM, SOLUTION, AND DESIGN SPACES OF MULTI-AGENT SYSTEMS ...................8 
FIGURE 2: CELL PARTITIONING AND UAV MOVEMENT................................................................................26 
FIGURE 3: TIMELINE FOCUS AND EVENT FOCUS OF THE PRINCIPAL INVESTIGATORS’ 

DEMONSTRATIONS .......................................................................................................................................40 
FIGURE 4: ACTIVMEDIA PIONEER 2-DXE ..........................................................................................................42 
FIGURE 5: MICA2 MOTE AND SENSOR BOARD ................................................................................................43 
FIGURE 6: A ROBOT PERFORMING VIDEO SURVEILLANCE OF A TARGET WITH AN ACOUSTIC UGS 

IN THE FOREGROUND. .................................................................................................................................44 
 
 



 

 

 

iii

LIST OF TABLES 
 
TABLE 1: RESULTS OF THE COORDINATED TASK SCHEDULING ALGORITHM.......................................21 
TABLE 2: GREEDY APPROACH TO TASK SERVICING .....................................................................................22 
TABLE 3: RESULTS OF THE COORDINATED TASK SCHEDULING ALGORITHM WITH A PENALTY.....22 
TABLE 4: THE MEASURED EFFECT OF A SMALLER OBSERVATION RANGE ............................................23 
TABLE 5: COMPARISON OF RESULTS FOR SEVERAL TASK SCHEDULING ALGORITHMS.....................24 
TABLE 6: AVERAGE WAITING TIME FOR FIRST-COME FIRST-SERVE POLICY WITH RANDOMIZED 

ASSIGNMENTS AND PARTITIONING .........................................................................................................27 
TABLE 7: UPPER BOUND ON THE AVERAGE WAITING TIME FOR THE TRAVELING SALESMAN 

PROBLEM APPROACH...................................................................................................................................28 
TABLE 8: ATTENDEES OF THE TASK PROJECT-WIDE DEMONSTRATION .................................................33 
TABLE 9: TASK DEMONSTRATION ORGANIZATIONS AND RESEARCH AREAS.......................................34 
TABLE 10: PARTICIPANTS IN THE TASK OEF DEMONSTRATION ................................................................36 



 

1 

 

1 INTRODUCTION 
The objective of BAE SYSTEMS Advanced Information Technologies’ (AIT) effort, performed 
under the DARPA Taskable Agent Software Kit (TASK) program, was to extend the current 
scientific and mathematical foundations of agent-based computing by adding rigor to the 
engineering of agent-based systems and tools.  To meet this objective, AIT performed the 
following tasks: 
 
 The Open Exploration Framework (OEF): the OEF was a well-defined abstract problem 

context in which researchers could apply dissimilar approaches to a standard problem set and 
compare results on a standard basis.  AIT defined the common problem set, the 
characteristics and parameters of the OEF, and bases for results comparison.  In addition, 
AIT facilitated discussions about the OEF among the TASK Principal Investigators (PIs) and 
incorporated into the OEF consensus new and additional concepts that arose during these 
discussions. 

 
 The TASK OEF Website: AIT maintained a website with links to the TASK Principal 

Investigator’s TASK websites, with presentations made by the TASK Principal Investigator’s 
at the scheduled PI meetings, with papers provided by the Principal Investigator’s, with links 
to other websites of interest, and with copies of other papers of interest to TASK and the 
OEF. 

 
 Multi-Agent System (MAS) Research: AIT investigated approaches to the design and 

control of intelligent cooperation and adaptation within systems of autonomous, 
communication intelligent agents that perform tasks in rapidly changing environments.  
During this period the research effort focused on techniques for agents operating within a 
multi-agent system to coordinate on minimizing the time a task waits between when it is 
available for service and when it is serviced by the multi-agent system. 

 
 The AIT Testbed for Taskable Agent Systems (TTAS): AIT developed TTAS, a highly 

instrumented, simulation environment in which the same, repeatable experiments can be 
performed upon adaptive systems of cooperating, autonomous, intelligent agents.  Because of 
TTAS’s standard application programming interfaces (APIs), messaging services, and 
repeatable environment, researchers can compare similar measurements made on different 
MAS implementations under the same experimental conditions and draw meaningful 
conclusions about comparisons of the different MAS implementations.   

 
 The TASK Project-wide Demonstration: AIT designed, organized, and facilitated a 

project-wide demonstration for the DARPA TASK program for all PI organizations.  This 
demonstration took place, August 4, 2004 in the ballroom of the Hotel Washington, 
Washington, DC.  Nearly thirty people from various governmental and commercial 
organizations attended. 

 
 The AIT Demonstrations for the TASK Project-wide Demonstration: AIT provided two 

demonstrations of its research into multi-agent systems.  One was a software demonstration 
of the adaptation and cooperation algorithms that resulted from AIT’s MAS research.  The 
second was a hardware demonstration of a system of autonomous robots and MICA2 Motes 



 

2 

 

cooperating to locate and survey acoustic targets.  The algorithms developed in AIT’s MAS 
research were implemented on the robots for the hardware demonstration. 

 
1.1 OBJECTIVES AND ACCOMPLISHMENTS 
AIT performed six tasks.  The first, the OEF provided a common research context for all TASK 
Principal Investigators.  In the second task, AIT maintained a website for TASK and the TASK 
OEF.  In the third, AIT performed research into several approaches to adaptation and 
coordination in MASs.  In the fourth, AIT continued development of its general testbed simulator 
TTAS in which experiments can be performed on different and mixed MAS implementations.  
For the fifth, AIT facilitated a project-wide demonstration for all TASK principal investigators.  
In the sixth, AIT developed two AIT demonstrations that featured different aspects of AIT’s 
MAS research and presented them at the project-wide demonstration. 
 
 The OEF: The TASK Principal Investigators used the OEF, described within Section 2 in 

detail, and the UAV surveillance and reconnaissance problems that AIT defined as a focus 
for the application of much of their research.  Several groups used the OEF problems as a 
basis for collaboration, and others exchanged related data and software.  Discussions about 
the OEF and metrics associated with the OEF engendered lively and thoughtful discussion 
during teleconferences and at meetings.  AIT crafted metrics for the OEF based upon the 
various discussions, but the project ended before all of the Principal Investigators agreed that 
these metrics were sufficient and complete.  Overall, the OEF was a success. 

 
 The TASK OEF Website: The Principal Investigators, the DARPA Program Manager, and 

DARPA support personnel commented that they used the website to become acquainted with 
the details of other Principal Investigators work and, in general, found the website quite 
useful.  AIT provided a copy of the entire website to the DARPA Program Manager through 
the DARPA support personnel at the end of the TASK project. 

 
 MAS Research: AIT examined several possible approaches to collaboration and adaptation 

in multi-agent systems and chose to investigate optimization-based techniques for an agent to 
select specific tasks for servicing and determining the optimal order in which the agent 
should service the tasks.  Secondary collaboration and adaptation activities rely upon inter-
agent messages for one agent to inform others that it serviced a task and to schedule a cross-
mission task servicing with another agent.  Section 3 contains an extensive description of the 
algorithmic approach and the numerical results of simulations. 

 
 TTAS: AIT provided a complete description of the design and operation of the Testbed for 

Taskable Agent Systems in an earlier report (Dynamic Control and Formal Models of Multi-
Agent Interaction and Behaviors: Final Technical Report, Nov. 27, 2002).  During the period 
covered in the current report, AIT performed maintenance and minor enhancements to 
support AIT’s MAS research effort.  AIT found that TTAS is very good for both the rapid 
survey of MAS implementations and for in-depth experimentation with a specific MAS 
implementation under diverse conditions. 

 
 TASK Project-wide Demonstration: The project-wide TASK demonstration, held August 

4, 2004, at the Hotel Washington, Washington D.C., was an opportunity for government, 



 

3 

 

industrial, and academic researchers and developers to sample the results of the TASK 
project.  The demonstration was a modest success with all TASK Principal Investigators 
presenting demonstrations and approximately thirty people from outside the TASK project 
attending.  Section 4 contains a description of the basis of the demonstration, which was an 
extension of the OEF.  Those who attended were quite enthusiastic about the demonstrations.  
With additional follow-up on the initial invitations, it is likely many more people would have 
seen the demonstration and had similar opinions. 

 
 The AIT Demonstration: AIT presented a software-based demonstration that used TTAS 

and presented the details and the results of AIT’s research into optimization-based adaptation 
and collaborations algorithms for a multi-agent system servicing asynchronously arriving 
popup tasks.  In addition, AIT presented a hardware-based demonstration of robots and 
sensor networks executing the algorithms crafted during AIT’s MAS research efforts.  The 
robots acted as UAV stand-ins and had a fully complement of video, laser, and sonar sensing, 
on-board computing, and communications with both robots and the nodes of the sensor 
network.  The hardware demonstration, described in Section 5, served as an extension to 
AIT’s basic MAS research.  In this extension, AIT examined the compromises and 
complexities necessary to bring theoretical algorithms to real hardware.  Surprisingly, few 
compromises occurred.  By using TTAS, a simulated experimental environment that used an 
abstract but realistic model of UAVs, AIT researchers had encountered almost all such 
difficulties during development of the algorithms.   

 



 

4 

 

2 The Open Experimentation Framework (OEF) 
The first purpose of the OEF was to provide a common military context in which TASK 
Principal Investigators could perform cooperative research or, while using quite different 
techniques, produce results they could compare or use complementarily.  The second purpose or 
the OEF was to focus the Principal Investigators’ efforts on important and difficult problems 
common to all multi-agent systems.  The meta-problem that AIT defined to establish the OEF 
context was 
 

M autonomous UAVs cooperate to locate, identify, and track N stationary and 
moving ground targets and adapt to varying numbers of targets, the ratio of 
targets with known to unknown locations, to changing threats, to disrupted 
communications, and to changing “accuracy” requirements while maintaining 
continuous tracking. 

 
Within this context, researchers were to focus on three major problems crucial to the deployment 
of effective multi-agent systems. 
1. Coordination: communication between the UAV-agents of local information and goals with 

the intention of improving the group’s performance.  The major MAS problem addressed in 
this topic is design interoperability, which is the necessity for the agent developer to use a 
common semantics and syntax for all agents that are to coordinate their actions.  The UAV 
example is the development of techniques to assure that the UAVs share relevant 
information, such as individual and group situation assessment, individual goals, etc, that is 
needed to achieve group goals. 

2. Adaptation: the ability to recognize and respond to unanticipated mission and environment 
dynamics by learning new behaviors.  The MAS problem addressed is system design 
incompleteness, which is the recognition that the agent developer cannot and should not 
anticipate and design for all possible situations a set of agents might encounter.  A UAV 
example is to respond to new threats, such as handheld surface-to-air weapons, to 
environment conditions, such as sand storms, to new missions, and to new objectives. 

3. Autonomy: allow heterogeneous units to operate autonomously while fulfilling individual 
local goals and missions and yet cooperate effectively with the other agents to achieve the 
group goals.  The MAS problem addressed is flexible, “run-time” distribution of control.  
The UAV example is to use new and existing UAVs to achieve critical missions through the 
distributed, designed regulation of collective behavior without introducing and using 
centralized command and control.   

 
AIT intentionally specified the OEF abstract lyand to contain only minimal physical detail.  
AIT’s purpose in providing such an abstract specification was to minimize details that might 
require significant effort but were irrelevant to the multi-agent system research topics of interest.  
Items such as path finding, terrain following, communications details, etc were such details.  
However, to give the OEF sufficient substance for research, AIT defined five problems of 
increasing complexity focused on Unmanned Aerial Vehicle (UAV) surveillance and 
reconnaissance tasks. 
 
 



 

5 

 

UAV-S (1) Baseline: Stationary Targets:  coordinate the surveillance and reconnaissance of 
stationary targets in dynamic environments.  The target locations may be known, which is 
coordination of the surveillance service, or unknown, which is coordination of the 
reconnaissance service.  To create the dynamic environment, new stationary ground targets 
appear – popup – randomly and may require surveillance by a specified time.  UAVs coordinate 
to minimize the time a popup target waits before they survey or find it and to minimize “wasted 
effort”, that is, multiple surveillance or reconnaissance of the same target by different UAVs.   
 
UAV-S (2) Cross-Mission Tasking: two or more UAVs must coordinate to service the same 
target nearly simultaneously with different sensors or from different angles.  This problem, an 
extension of the baseline problem, is a harder MAS coordination problem since the UAVs must 
exchange and process information sufficient for them to arrive nearly simultaneously under 
conditions appropriate to maximize the usefulness of the data gathered and not merely to avoid 
ever approaching an already serviced target. 
 
UAV-S (3) Imperfect Information: include several explicit sources of uncertainty, e.g. in the 
detection and identification of targets, as an extension to the baseline problem.  The previous 
problems contained only implicit uncertainty, e.g. due to stale and/or partial information.  
Situations that one might investigate under this problem could include malfunctioning and mis-
calibrated sensors and software problems.  Additionally, communications between UAVs may be 
corrupted and incomplete, or enemies may inject false communications.   

 
UAV-S (4) Mobile Targets: maintain identification, position, and speed estimates of mobile 
targets across the Area of Operations (AOR) in which the MAS of UAV-agents operate.  This 
MAS coordination problem is both harder because it is a distributed multi-target data fusion-
tracking problem and contains uncertainty that is more explicit.  UAVs must pass processed and 
raw tracking information to each other and most likely must coordinate target handoffs to 
maintain maximum and efficient coverage of the entire AOR.  One could naturally extend this 
problem to intelligent adversaries that attempt to avoid discovery and surveillance. 
 
UAV-S (5) Hybrid Tasking:  multi-mission, highly-domain-relevant problem combining some 
or all aspects of the previous problems.  Such hybrid tasking problems can include intelligent 
stationary or mobile targets with the capability of destroying UAVs, to interrupt and disable 
UAV communications, cross-mission tasking of mobile targets, etc. 
 
A primary object of the OEF process was to provide a means for potential users of the MAS 
design approaches developed by the TASK researchers to determine when one approach might 
be preferable to another.  AIT facilitated many teleconferences with the TASK PI investigators 
and discussions at PI meetings about such research metrics.  From these discussions, AIT 
developed a parameterization approach that can yield a quantitative basis for users to select an 
appropriate MAS approach for their particular requirements.  The first element in AIT’s 
parameterization is to decompose the TASK OEF context into four elements: (1) problem space 
parameters, (2) solution goals, (3) design space parameters, and (4) metrics. 
 



 

6 

 

Problem Space is the quantitative specification of the problem to be solved.  A researcher 
specifies the particular problem in parameters derived from the following general Problem Space 
meta-parameters. 
 Scale is the total number of items per unit of time with which the MAS must deal.  

Generally, items are the tasks the MAS must service such as the UAV surveillance and 
reconnaissance targets.  

 Communications includes the quantifications of the type (such as line-of-sight, beacon, 
satellite, and laser) available bandwidth, ranges, and frequencies and the likely content 
accuracy and content completeness.  The researcher must quantitatively specify the likely 
effects that items such as landscape features, anticipated atmospheric conditions, and 
possible jamming will have upon communications.  

 Information Density is the amount of information and data available to the system both 
statically and dynamically.  Static information includes terrain maps, sensor capabilities, and 
the capabilities of other agents.  Dynamic data includes the sensor data, communications 
content, and for UAVs flight data. 

 Resources include the amount of computing each agent and the MAS can perform.  For 
example, explicitly included are parametric quantifications of storage, computing throughput, 
and the type and amount of “sensing” each agent can perform  

 Uncertainty is a quantification of the incomplete, ambiguous, and erroneous information 
that exists within the Problem Space. 

 Threat Level is a quantification of the number and type of entities opposing the MAS. 
 Dynamics are the rates at which the Problem Space Parameters change and the rates of 

change of these rates of change.  For example, the anticipated rate at which popup targets 
appear is one of these dynamic parameters as is the rate at which this rate changes. 

 
Solution Goals are the specifications for a “successful” solution predefined in terms of 
measurable parameters.  A researcher must derive the measurable parameters from meta-
parameters that generally characterize Solution Goals.   
 Purpose: quantification of how well the MAS performs the tasks for which it was designed.  

For example, in the UAV surveillance and reconnaissance problems, one might have 
designed the MAS to survey 10 targets per minute at maximum load with a tolerance of ±0.5.  
If the MAS survey a maximum of 8.76 targets per minute, it is not fulfilling its purpose with 
respect to the Solution Goals.  One assumes that the basic goals of the MAS are fulfilled and 
do not require quantification.  For example, a MAS that is to perform surveillance of 
stationary ground targets actually surveys stationary ground targets. 

 Accuracy: specified quantification of the tolerances permitted in the individual datum and 
information that the MAS actually delivers.  For example, the goal for a MAS may be to 
determine the tracks of all moving targets to less than 1 meter.   

 Timeliness: the MAS delivers information and data and performs activities and tasks at 
specified time goals and within specified time windows.   

 Survivability: after catastrophe, the MAS continues to meet the purpose, accuracy, and 
timeliness goals within pre-specified limits.   

 Robustness: the MAS continues to meet the purpose, accuracy, and timeliness goals within 
specific limits when resources degrade, problem complexity changes, and problem ambiguity 
or environmental uncertainty change. 



 

7 

 

 Stability: the MAS continues to meet purpose, accuracy, and timeliness goals within 
specified limits as the Problem Space parameters fluctuate widely and rapidly. 

 
A Design is a set of related algorithms that purports to meet the solution goals defined by the 
Problem Space parameters.  A researcher must specify his design or class of designs in terms of 
parameters derived from the Design Space meta-parameters.   
 MAS Size: the number of agents that make up the MAS. 
 Determinism: a measure to which the MAS is deterministic or non-deterministic.  Note: The 

MAS might be non-deterministic even if the individual agent behaviors are deterministic, 
such as is true with swarms.  Similarly, lowest-level behaviors of a single agent might be 
deterministic or reactive or, but if the agent processes data and information based on its 
recent history rather than just its current situation, the overall behavior of the agent and MAS 
may be non-deterministic.  

 Complexity: simple static complexity, such as program size; simple deterministic dynamic 
complexity, such as number of elementary steps before halt (time) or total amount of 
“memory” used before halt (space – cell used in a Turing machine, e.g.); simple non-
deterministic dynamic complexity, such as the number of steps in the shortest acceptable 
computational path before halt (time); similarly for “memory” (space). 

 Completeness: which solution goals does the design met under all appropriate and allowed 
combinations of problem space parameters 

 Degree of Learning: applies to both individual agents and to the system of agents 
 Connectedness: the degree to which an agent’s beliefs and actions are influenced directly by 

the internal state of is neighbors, other agents, and the multi-agent system as a whole, and the 
level of detail to which the agent examines this external information. 

 Knowledge: the extent to which knowledge, beyond the implicit knowledge captured within 
the structure of the agents and of the multi-agent system, is used by the agents in forming 
their beliefs and/or action, and the nature of this knowledge: global and static, dynamic and 
local, and/or combinations. 

 
The Metrics are the bases for measures of how well the solution goals are satisfied under the 
various allowable combinations of values from the problem space parameters’ domains.  Metrics 
of this time are what one measures during experiments, quantized by the Problem Space 
parameters, for particular MAS implementations, quantized by the Design Space parameters.  
 Real-time and summary measurements of the Problem Solution Goals: Purpose, Accuracy, 

Timeliness, Survivability, Robustness, Stability 
 Plus additional problem specific goals 
 Plus additional design-implementation specific goals 
 The Autonomous Control Level (ACL) Metrics 
• Developed by Bruce T. Clough, Technical Area leader: Control Automation, AFRL/WP 

and colleagues 
• Metrics, Schemetrics! How do you track UAV’s autonomy?, AIAA-2002-3499.  
• Incorporated into the DoD’s Unmanned Aerial Vehicle Roadmap 2000-2025, Office of 

the Secretary of Defense, Washington DC. April 2001 
• In some sense the ACL Metrics are an instantiation of the abstract Design Space meta-

parameters for the real, operational UAV MAS problem 
 



 

8 

 

 

Figure 1: The Problem, Solution, and Design Spaces of Multi-Agent Systems 
 
These parameterizations of the problem space, solution goals, and design space are consistent 
with the principal multi-agent system problems of coordination, adaptation, and autonomy and 
with the metrics that measure the results of a multi-agent system implementation.  Future 
research into these parameterizations and metrics should focus on specific problems, such as the 
OEF surveillance and reconnaissance problems, and specific quantification of the associated 
parameters.  Treating explicit quantitative parameterizations of the problem, solution, and design 
spaces as independent variables of the dependent variables of the performance metrics and using 
experimental simulations to determine the functional dependencies is a seldom-realized goal of 
systems engineering.  These investigations for the OEF, conducted as discussions between the 
TASK Principal Investigators and facilitated by AIT, are a unique contribution.  Further 
development and exploration in other DARPA programs can provide a formal basis for this 
primary systems engineering activity.

Solution 

Design 

Problem 

Scale 
Communication
Information 
Resource

Uncertainty 

Threat 

Dynamic

Purpose
Accuracy

Timeliness
Survivability 

Robustness 
Stability

MAS 

Determinism

Complexity

Completeness 

Learning 

Connectedness 

Knowledge 



 

9 

 

3 MULTI-AGENT SYSTEM (MAS) RESEARCH 
AIT’s MAS researched focused on two areas.  The first focused on a distributed, dynamic 
algorithm that can use collaboration messages between UAV-agents to perform the surveillance 
tasks described in the OEF problems UAV-S (1) and UAV-S(2), that is, popup stationary ground 
site targets and cross-mission tasking.  Section 2.1 contains description and discussion of this 
work.  The second focused on some preliminary investigations into the use of Bayesian networks 
as an approach to implementing plans in MAS teams that accommodate adaptation to incomplete 
and unknown knowledge.   
 
3.1 Starvation and Waiting Times for a Distributed and Dynamic Vehicle 

Routing Problem 

3.1.1 Introduction 
Recent technological advances in communications and the advent of unmanned aerial vehicles 
(UAVs) with the ability to self-navigate has resulted in challenging new problems becoming 
relevant to researchers in the operations research (OR) community.  It is now possible (or shortly 
will be possible) for a group of UAVs to be implementing a plan in an area that is remote 
compared to the location of other entities of the system, such as a base station or dispatcher.  In 
such a case as this, it may be infeasible or too costly for the dispatcher to maintain a complete 
situational awareness on the status of the UAVs and the overall plan.  If the dispatcher has 
limited information about the UAVs’ operating environment, then it is best that the UAVs 
autonomously decide what actions to take in order to satisfy the overall plan.  This problem is 
further complicated when it is assumed that each individual UAV has limited knowledge about 
the environment.  Due to restrictions on the size and cost of a UAV, each UAV may have limited 
ability to observe the environment and communicate with other UAVs.  This paper investigates a 
problem that contains all of these aspects. 
 
The motivation for this paper comes from a military application.  Consider multiple 
heterogeneous UAVs, operating in an area of operations (AO) Ω of fixed specifications, that 
need to perform surveillance of objects (tasks) that are located at fixed positions (i.e., the tasks 
are stationary).  The UAVs have different sensors to perform surveillance of tasks of different 
types, but, generally, not all UAVs have all of the different types of sensors.  Each task is one of 
a finite number of types and it must be serviced by a sensor of the same type.  The AO and 
surrounding region is hostile; making it impossible to locate a dispatcher or central command 
nearby.  The dispatcher becomes aware of tasks that need to be surveilled through sources of 
intelligence and then relays the information (location of task and task type) to all of the UAVs.  
Therefore, the UAVs become aware of the tasks in a dynamic manner and, in modeling this 
problem, it is assumed that the tasks arrive one at a time, where the task inter-arrival times are 
independent and identically distributed.  Also, when this problem is modeled, it is assumed that 
the locations of the tasks are independent and identically distributed.  The UAVs are compact 
with limited ability to communicate and thus cannot send information back to the dispatcher to 
indicate their status, such as their current locations and lists of serviced tasks; thereby implying 
that the dispatcher is ill-suited to give commands to the UAVs.  Furthermore, the UAVs can only 
communicate with other UAVs within a specified range (communication range) and can only 



 

10 

 

observe the locations of other UAVs within a specified range (observance range).  Therefore, 
each UAV must individually decide for itself which tasks to service. 
 
For many particular scenarios of this military application, the intuitive solution would be to take 
a “partitioning approach” and assign each vehicle a distinct area to “cover.”  As an example, 
suppose that there is only one task type, task locations are uniformly distributed throughout the 
AO, and each vehicle can service any of the tasks.  In this case, a good approach to the problem 
is obtained by simply assigning each UAV to a distinct region, where the regions are of 
approximately equal area, and force each UAV to only service tasks in its region.  Bertsimas and 
van Ryzin [1] conjecture that such a policy is optimal when an optimal single-vehicle policy is 
used in each region. 
 
The focus of this research is to develop algorithms for scenarios that cannot be addressed with a 
partitioning approach as described in the previous paragraph.  This paper introduces a control 
policy to address the military application described earlier for cases where there are multiple task 
types and heterogeneous UAVs.  To investigate the effectiveness of the control policy, it is tested 
on a scenario that is illustrative of scenarios requiring interaction among the UAVs.  This 
scenario consists of five task types (denoted y1, y2,…, y5) and four UAVs, where tasks of type y1 
can be serviced by all of the UAVs and each of the remaining four task types (y2, y3, y4, y5) have 
exactly one UAV that can service them.  Tasks of each type are distributed uniformly throughout 
the AO.  Since there is only one UAV for each of the task types y2, y3, y4, or y5, a partitioning 
approach is infeasible for this problem (i.e., each vehicle needs to be able to fly everywhere in 
the AO). 
 
The objective for this military application is to service the tasks in a manner that is as efficient as 
possible over a given time horizon, where efficiency is specified by a function of the task waiting 
time distribution.  The waiting time of a task is the time between when the UAVs become aware 
of the task and the time of service for the task.  The task waiting time distribution is the 
probability distribution of the waiting time for a randomly selected task.  A natural measure of 
efficiency is given by the expected waiting time for a randomly selected task.  The expected 
waiting time for a randomly selected task that results from a given control algorithm can be 
estimated by simply computing the average waiting time for the tasks in a simulated environment 
(for some control policies, the expected waiting time can be computed analytically).  If the tasks 
are serviced so that the expected task waiting time is minimized, then it is possible that many 
tasks will wait an exceedingly long time for service.  This problem arises since a newly arriving 
task may be more favorable to service than a task that has waited for a long time and is far away 
from the current locations of the UAVs.  Therefore, a more reasonable objective for this problem 
may consist of jointly trying to minimize the expected waiting time and the probability that a 
task waits more than Tw seconds for service, where Tw is a specified constant.  This paper 
introduces an algorithm according to this objective.  A formal definition of a system performance 
measure is given in Section 2. 
 
In this paper, a model is proposed that captures the important aspects of the military application 
and then a purely decentralized control approach is introduced to address this model.  An 
approach to the military application can be broadly categorized as being either a decentralized or 
centralized technique.  A centralized technique usually contains a central node that gathers as 



 

11 

 

much information as possible (according to time constraints and costs) about the environment 
and then issues commands to all of the UAVs based on this information.  A technique that 
consists of periodic “meeting” times or other methods to consolidate information at a central 
location for the purposes of decision making is a centralized technique.  The term “meeting” is 
meant to refer to the situation where multiple UAVs fly to a designated region in order to share 
information and possibly coordinate future actions.  While the centralized approach may be 
successful for many scenarios, this paper is focusing on scenarios that are better addressed in a 
purely distributed/decentralized fashion.  Situations involving rapidly changing environments 
(high arrival rate of incoming tasks) are probably addressed more efficiently with purely 
decentralized approaches.  A purely decentralized technique implies a control policy for an 
individual UAV that does not consist of periodic “meeting” times between the UAVs.  Note that 
the regularly scheduled meetings of a centralized technique incur a cost; it takes time and 
resources for the UAVs to travel to the designated “meeting” area.  This paper does not 
undertake a systematic procedure to determine under what scenarios the decentralized techniques 
outperform centralized techniques; that is left for future research.  However, this paper does 
compare several decentralized approaches in terms of their resultant task waiting time 
distributions. 
 
The dynamic military problem of this paper is addressed by solving a sequence of static 
optimization problems.  In our approach, each UAV re-optimizes its schedule after every Ts 
seconds has passed (Ts is specified and fixed) and whenever it becomes aware of a new task.  
After each time step (of length Ts), the UAVs select tasks that they plan to service in the near 
future.  The intent is for the UAVs to select tasks that are unlikely to be selected by other UAVs 
and would result in desirable operating characteristics for the overall system.  Once the tasks are 
selected, each UAV solves a static optimization problem to determine the order in which the 
selected tasks should be serviced.  The objective function for the optimization problem is defined 
according to the desired characteristics of the overall system.  If the system-wide goal is to 
minimize the average task waiting time, then the objective for the static optimization 
(minimization) problem could be to minimize the average waiting time of the selected tasks.  As 
another example, to prevent tasks from starving (waiting an exceedingly long time for service), 
the objective function of the static optimization problem could place a penalty on un-serviced 
tasks that have waited more than a specified amount of time.   
 
The static optimization problem solved at each time step and after each task arrives is a new (to 
the best of our knowledge) combinatorial optimization problem and will be referred to as the 
generalized minimum latency problem (GMLP).  GMLP contains the minimum latency problem 
(also called the traveling repairman problem) as a sub-problem.  GMLP is defined by a graph, a 
specified starting node, and a penalty function Pv(tv) (tv ≥ 0) associated with each vertex v.  The 
objective of GMLP is to find a path that visits each vertex at least once in such a way that the 
sum of the penalties is minimized.  An area of future research includes a theoretical investigation 
of the complexity of this new combinatorial problem.  The penalty for visiting a vertex v at time 
tv is given by Pv(tv).  GMLP is formally defined in Section 2. 
 
Due to the dynamic nature of the problem, there can be many cases where the UAVs need to 
make a decision quickly.  In an environment where tasks are arriving at a very high rate, the 
UAVs must quickly decide whether or not an incoming task should be serviced immediately, and 



 

12 

 

the decision of whether or not to service a task would depend on other tasks already in the 
system.  We have made a conscious effort to use algorithms for the static optimization problem 
that can operate quickly.  At this stage of our research, it is hard to precisely specify what is 
quick or efficient.  However, we are able to show that our algorithms provide good results even 
though the optimization is limited to a few iterations of a local search algorithm.  We believe that 
the algorithms given could be incorporated to work in real-time.   
 
In Section 2, the military application that was given earlier is defined as a combinatorial 
optimization problem called the multiple autonomous vehicle, dynamic traveling repairman 
problem (MAV-DTRP).  MAV-DTRP is a generalization of the multiple vehicle-DTRP (MV-
DTRP) proposed by Bertsimas and Van Ryzin [1,15].  The MV-DTRP is a particular type of 
stochastic and dynamic vehicle routing problem (see [20] for a recent survey on deterministic 
vehicle routing problems as well as dynamic and stochastic variants) that consists of demands 
(tasks) arriving dynamically over time, where these demands require an independent and 
identically distributed amount of on-site service by a vehicle.  The objective is to find a control 
policy for the vehicles that minimizes the average waiting time for demands to be serviced, over 
an infinite horizon.   Bertsimas and Van Ryzin [1,15], analyze several policies for MV-DTRP 
and analytically compute their average waiting times.  For some other policies, they obtain 
bounds on the average waiting time or estimate the average waiting time through simulated 
experiments.  They consider two different situations, vehicles with unlimited capacity and 
vehicles with limited capacity.  If a vehicle has a capacity of q, then the vehicle can serve at most 
q demands before returning to a depot.  In an earlier paper [2], Bertsimas and Van Ryzin 
introduce and analyze the DTRP, which is the MV-DTRP consisting of a single vehicle.   
 
MAV-DTRP generalizes MV-DTRP by considering a measure of performance that is a function 
of the task waiting time distribution rather than just focusing on the expected waiting time.  Also, 
MAV-DTRP restricts the vehicles to make autonomous decisions in the face of uncertainty.  
That is, the vehicles in MAV-DTRP model have limited ability to detect the location of other 
UAVs and limited ability to communicate.  The MV-DTRP model does not consider situations 
involving uncertainty in terms of vehicle locations, future decisions of vehicles, and previously 
serviced demands by vehicles.  
 
MAV-DTRP is a particular type of Dynamic Vehicle Routing Problem (DVRP) (see [7], [8], 
[12] and [16] for an overview).  Formally, MAV-DTRP is a dynamic problem, but it is not 
considered to be a stochastic vehicle routing problem (SVRP) [17].  Psarftis [16] proposes a 
taxonomy for characterizing attributes of information in vehicle routing problems.  The 
information available in a vehicle routing problem can be characterized by the evolution of 
information (static vs. dynamic), quality of information (known vs. probabilistic vs. unknown), 
availability of information (local vs. global), and processing of information (centralized vs. 
decentralized).  Static inputs refer to information that is known throughout the duration of the 
routing process, whereas dynamic inputs are revealed to the system over time.  The quality of 
information for an input corresponds to the amount of uncertainty about the input.  As an 
example, the on-site service time of a customer (demand) in a routing problem may be known 
exactly by the vehicles or it may be known to follow a probability distribution or it may be 
completely unknown.  If an input to a routing problem is known probabilistically, then the 
problem is called a SVRP.  The information can also be local or global.  If an input contains 



 

13 

 

global information, then the information is known to the entities of the system at all locations.  
Local information corresponds to inputs that are not available globally to all entities of the 
system.  The information given by the inputs can be processed in a centralized fashion, in that all 
information is sent to a central unit so that a decision can be made with all available inputs.  On 
the other hand, information can be processed in a decentralized way if the vehicles are allowed to 
autonomously determine which actions to take.  A decentralized approach may be indicated in a 
system where information is local and there is a significant cost (monetary cost or in terms of 
time) of processing information at a central unit.  The MAV-DTRP, which is the object of this 
paper, is a dynamic problem, where some information is considered unknown (such as vehicle 
locations and whether or not a task has been serviced), some information is known locally (each 
vehicle contains information that may be unknown to other vehicles and the other vehicles can 
only obtain the information by moving to within communication range), and information is 
processed locally (the vehicles are autonomous).  MV-DTRP is a stochastic and dynamic 
problem, where information is known globally and can be processed centrally without any 
consideration for communication costs.   
 
Dynamic and stochastic routing problems are starting to receive more attention from researchers 
since they are realistic representations of many applications.  For example, the travel time 
between two locations in a major metropolitan area can be modeled by a random variable (some 
days the traffic is worse than others).  Also, in many situations, such as those that occur in dial-a-
ride problems, not all information is known before the routing process begins so that some 
information is revealed over time (new requests for rides are received).  DVRPs are considered 
to be a subclass of a larger class of problems, called dynamic transportation problems [8].  
Several examples of dynamic transportation problems follow.  An instance of the dynamic 
traveling salesman problem (DTSP – see [23] and [24]) consists of a group of locations, where 
customers arrive at these locations and wait for service, and the goal is to find a policy that 
minimizes the average waiting time for the customers.  In DTSP, the inter-arrival times of 
customers are assumed to be independent and identically distributed and an arriving customer is 
placed at location i with probability pi.  Powell [21] and Powell et al. [9] introduce and develop 
algorithms for the stochastic dynamic assignment problem.  Also, Powell et al [3] discuss a 
dynamic truck load problem with user noncompliance.  User noncompliance refers to the system 
not following the decisions purported by the optimization routine.  Situations such as these could 
occur due to the stochastic and random nature of the dynamic truck load problem.  For instance, 
the problem they study assumes that the travel times between points are random variables and 
therefore part of a solution may become infeasible due to a late arrival of a vehicle.  They 
indicate that the user noncompliance in real dynamic truck load systems may be as high as 30%, 
which clouds the picture of defining “optimality.”  In other words, how can a solution be optimal 
if 30% of it will not be followed?  Powell et al. address the problem by solving a sequence of 
static optimization problems.  They show that in a random environment, in some situations, it is 
better to find near-optimal solutions to the static optimization problem rather than finding a 
globally optimal solution.  Minkoff [19] introduces the delivery dispatching problem (DDP), 
which is a stochastic and dynamic problem consisting of a set of fixed customers at specified 
locations that maintain an inventory of a particular good.  The customers lose inventory during 
every time stage according to some probability distribution.  The goal is to replenish the 
customers’ demands so as to minimize the long-run average cost (transportation costs plus 
inventory costs plus costs for unmet demand).  The customers receive goods from a fleet of 



 

14 

 

vehicles that each travel according to some itinerary (route through a subset of the customers 
together with the amount of goods to deliver to each customer on the route).  At each time step, a 
decision is made as to the number of vehicles to send out and which itineraries to assign to the 
vehicles.  Minkoff models this as a Markov decision process, where the system states consist of 
the inventory level at each of the customers and the objective is to determine which itineraries to 
use for each possible state of the system.  Moizumi and Cybenko [11] define the Traveling Agent 
Problem (TAP) and introduce efficient algorithms for the problem.  TAP is a stochastic problem 
that consists of a set of locations and a probability for each location that represents the likelihood 
of “success” when the agent visits that location.  The objective of the traveling agent problem is 
to find a path through the locations that minimizes the time it takes to have a “success” or else 
determine that all locations are “failures.”  As an illustrative example, they mentioned a person 
that needed to buy a particular item and had several stores to choose from, where each store had 
a certain probability of containing the item, and the person wanted to minimize his/her total 
searching time for the item.  All of these papers have some commonality with the work presented 
here, though (to the best of our knowledge) there are no papers that address a variant of DVRPs 
and consider situations that involve uncertainty in vehicle locations, vehicle plans, or the tasks 
previously serviced by the vehicles.           
 
There are quite a large number of papers that propose approaches to particular dynamic or 
stochastic transportation problems.  In this paragraph, a few of these papers are discussed.  
Papastavrou [18] studies DTRPs and proposes a policy that performs well in both light and 
heavy traffic.  Papastavrou shows that his policy is asymptotically optimal in light traffic and 
within a constant factor of the optimal policy for heavy traffic.  He models the state of the system 
as a branching process with state dependent immigration.  Also, Ichoua [25] et al. propose a 
solution to a dynamic and vehicle routing problem that probabilistically considers the effect that 
decisions have on the future state of the system.  Gendreau et al. [22] propose an adaptive 
neighborhood search (tabu search) algorithm to address a dynamic vehicle routing problem with 
pick-ups and deliveries.  They discuss how their approach can be implemented in a parallel 
fashion in order to reduce the execution time of the algorithm.  Finding quality solutions in a 
quick amount of time is very important for dynamic problems, since decisions have to be made 
rapidly when new information is made available to the system.        
 
The paper is organized as follows: Section 2 contains the formal definitions of MAV-DTRP and 
GMLP, and the formulation of our approach to MAV-DTRP.  In Section 3, the simulation 
environment is discussed in detail and the experimental results are given.  The material in 
Section 4 analytically computes the average waiting time for some control policies of MAV-
DTRP.  We compare these results to the experimental results of Section 3.  Finally, Section 5 
contains a discussion of future work and provides a conclusion.   
 



 

15 

 

3.1.2 Problem Formulation and Approach 
First, MAV-DTRP will be formally defined.  Later in this section, our algorithmic approach to 
this problem will be specified.  The military application that motivated the definition of MAV-
DTRP consists of UAVs that operate in a three-dimensional world.  However, to simplify the 
problem, the vehicles here are assumed to operate in a plane.  Furthermore, it is assumed that the 
vehicles cannot crash into each other (i.e., two vehicles are allowed to occupy the same position 
at the same time). 
 
MAV-DTRP:  An instance of this problem is described by the following: A group of m vehicles 
are needed to service tasks (demands) that arrive dynamically over time.  Each task generated is 
of a particular type (task types are denoted by {y1,y2,…,yk}) and tasks are generated up to a time 
T.  Tasks of type yi (for i = 1,2,…,k) arrive according to a Poisson Process with rate λi.  All tasks 
are located in a two-dimensional, convex region Ω.  When a task of type i is generated, it is 
placed in Ω according to a spatial distribution gi : Ω → R+.  Every UAV has a collection of 
sensors, which are used to service the tasks.  Let {s1,s2,…,sk} denote the k different types of 
sensors, where a task of type yi must be serviced by a sensor of type si.  Each vehicle has a 
specified range for communicating with other vehicles (communication range), observing the 
location of other vehicles (observance range), and servicing tasks (sensor range).  The sensor 
range specifies how close a vehicle needs to be to a task in order to service that task.  The goal is 
to service all tasks so that a prescribed objective function is minimized.  Let Wu be the random 
variable equal to the waiting time for a randomly selected task, under the policy u, and fu be the 
probability density function for Wu.  The objective function F:Θ→R (where Θ is the set of all 
probability density functions defined over [0,∞)) is defined to be a function of the probability 
density fu and the goal is to find the policy u that minimizes F(fu). 

 
It is not the purpose of this paper to find policies that minimize particular objective functions F.  
Rather, this paper shows how different policies can be used to alter the resultant characteristics 
of the density function fu.  The most natural example for the objective function would be to 
define it to equal the expected waiting time for a randomly selected task.  In this case, the 
function F would be defined by 

)()()(
0

uuu WEdtttffF == ∫
∞

. 

In this case, note that there is a unit penalty applied to the system for each second of the expected 
waiting time.  As another example, F could be defined to be  

}),0(max{)()()()()(
00

wuuuuu TWMEWEdttfwtMdtttffF −+=−+= ∫∫
∞∞

, 

where w and M are specified constants.  The purpose of this objective function is to penalize 
algorithms that allow a large number of tasks to wait for more than w seconds before being 
serviced.  This objective function specifies a unit penalty to the system for each second of the 
expected waiting time and M units of penalty for each second of the expected time the tasks wait 
more than the threshold Tw. 
 



 

16 

 

Note that MAV-DTRP could be defined over an infinite horizon.  In that case, the objective 
becomes to minimize a function of the task waiting time distribution in the long-run.  To define a 
problem in this way so that it makes sense, attention must be restricted to algorithms that 
guarantee, with probability one, that all generated tasks are serviced.  Otherwise, it would be 
possible to define an algorithm that only services tasks that are favorable, according to the 
objective function, and ignore other tasks.  For instance, if the objective is to minimize the 
average waiting time, then an algorithm can be defined that only services tasks that are generated 
with a distance ε of a specified location.  By reducing the value of ε, an algorithm can be easily 
obtained with arbitrary small expected task waiting time.   
 
The CTS approach is proposed to address this problem.  With this approach, MAV-DTRP is 
handled by solving a sequence of static optimization problems.  The pseudo-code for CTS 
follows.  Note that CTS is a policy for a single vehicle operating in an environment consisting of 
other heterogeneous vehicles.  Therefore, by having each vehicle make decisions from the CTS 
policy, we have a decentralized approach to MAV-DTRP. 

 

CTS 

 time = 0; 
 L = [ ]; 
 nextUpdate = 0; 
 timeBetweenUpdates = Ts; 
 For each simulation step 
 Let ∆ equal all UAVs within the observance range of this vehicle 
 If (time >= nextUpdate) 
 Let L equal all tasks that are closer to this vehicle than any other 

vehicle in ∆ 
Let solution equal a permutation of L that represents the order the tasks 

in L should be serviced.  This is obtained by an optimization 
routine A(L) 

nextUpdate = nextUpdate + timeBetweenUpdates; 
 else 

If a new task has arrived and this vehicle is closer to it than any other 
vehicle in ∆, then add it to list L AND let solution be the 
permutation obtained from A(L) 

 end 
 time = time+ timeStep; // timeStep is amount of real-time associated with a 
simulation step 
 if (length of solution > 0) 
                       move to the location of the next task, based on solution 
 else 
  follow Greedy policy  // Greedy policy is discussed in Section 3 
 end 
 Remove any serviced tasks from L and solution 
 Communicate new information to other vehicles in communication range 
 end of for loop 



 

17 

 

The CTS approach as described above guarantees that each task is selected by a vehicle (possibly 
multiple vehicles) at the beginning of every time step.  This is an important characteristic, since 
otherwise we would have to worry about tasks being repeatedly left un-selected by all of the 
vehicles.  It is possible to develop an approach that allows a vehicle to probabilistically estimate 
the location of other vehicles outside of its observance range.  Also, it is possible to develop a 
technique to estimate the likelihood that a task has been serviced by another vehicle.  However, 
developing techniques for these two estimation problems is nontrivial.  For example, it is 
doubtful that there exists an effective approach for estimating locations of vehicles that have not 
been in the observance range for a long time.  Furthermore, it is not obvious that estimation 
techniques for these two problems would improve performance since estimation error could have 
a seriously negative impact on the problem.  
 
The optimization routine A(.) is now described.  This optimization routine determines the 
schedule or order of service of the tasks in L.  The optimization algorithm A(.) finds a near-
optimal solution to instances of GMLP.  An instance to GMLP is represented by a graph G = 
(V,E), specified starting vertex s ∈ V, set of travel times tij between all vertices i and j, and a 
penalty function Pv : R → R associated with each vertex v ∈ V.  The objective is to find a path 
for a vehicle starting at s, which visits each vertex at least once and minimizes∑

∈Vv
vv tP )( , where tv 

is the time the vehicle reaches vertex v.  The number Pv(t) represents the amount of information 
(or value or money) lost for visiting vertex v at time t.  In this paper, GMLP is restricted to cases 
where the penalty function increases with time, which denotes the fact that it is better to service a 
task earlier as compared to a later time.  It is easy to see that if the penalty function satisfies, for 
every instance, Pv(t) ≡ P(t) = at (for some number a > 0), then the resulting problem is equivalent 
to the MLP.  MLP can be approximated in polynomial time [4], but it is MAX-SNP hard, which 
implies that it is unlikely for there to exist a polynomial-time approximation scheme (PTAS) [6] 
for this problem (unless P=NP).  Note that since MLP is a sub-problem of GMLP, then GMLP is 
also NP-hard [5].  The following lemma shows that restricted versions of GMLP are in APX [6] 
(i.e., it can be approximated in polynomial time within a constant factor α ≥ 1). 
 
Lemma 1:  Define GMLP(a, b) (where a < b) to be the set of instances of GMLP where at < 
Pv(t) < bt for all t > 0 and vertices v.  Then GMLP(a, b) can be approximated within a factor of 
(b/a)α in polynomial time, for some constant α ≥ 1. 
 
Proof:  Let G = (V,E), starting vertex s ∈ V, set of travel times tij between all vertices i and j, and 
penalty functions Pv : R → R for all v ∈ V, define an instance of GMLP(a, b).  Let ω = 
sv11v12…v1n represent an optimal solution to this instance.  Then, there exists a constant α so that 
a α-optimal solution sv21v22…v2n can be found (in polynomial time) to the corresponding MLP.  
It follows that  

α
a
b

ta

tb

tP

tP

i
v

i
v

i
vv

i
vv

i

i

ii

ii

≤≤
∑
∑

∑
∑

1

2

11

22

)(

)(
. 

Since the solution sv21v22…v2n can be found in polynomial time the result follows. 
 



 

18 

 

The GMLP model is used by the optimization routine A(.) in the following way.  A penalty 
function is associated with each task that represents the amount of information (or value or 
money) lost as a function of time.  All tasks are considered to have the same priority so that we 
let P(t) represent the penalty function for all tasks.  The function P(t) is   When the algorithm 
A(.) is called, an instance of GMLP is constructed in the following way: a graph G = (V,E) is 
constructed where each vertex corresponds to either the location of a task or to the current 
location of the vehicle.  The starting vertex s corresponds to the vehicle’s current location.  The 
travel times between all pairs of tasks and between the starting location and all of the tasks is 
estimated to be the distance between the two locations divided by the cruising speed of the 
vehicle.  The penalty function of vertex v ∈ V is given by Pv(t) = P(t + tov), where tov is the time 
that task v was generated.  The algorithm A(.) then finds a solution with near-minimal value 
for∑

∈Vv
vv tP )( , where tv is the additional amount of time that vertex (demand) v will have to wait, 

from the current time, for service. 
 
Due to the dynamic nature of MAV-DVRP, it is important to develop algorithms that run in near 
real-time.  The importance of very efficient algorithms is magnified by the fact that, in reality, 
the UAVs or vehicles will be compact and possess very little computational power.  In other 
words, it is desirable to have an algorithm that runs extremely fast and is yet still able to produce 
quality solutions.  Therefore, a local search algorithm is proposed to address GMLP.  For many 
combinatorial optimization problems, the performance of local search algorithms is greatly 
improved by investing some time to find a high-quality initial solution.  Since the number of 
computations is severely limited for these experimentations, the importance of finding a high 
quality initial solution is intensified.   
 
In this paper, the 2.5-opt local search algorithm [10], which is a well-known technique for MLP 
and TSP, is used to address GMLP.  In general, the k-opt neighborhood of a Hamiltonian path ω 
is defined to be the set of all Hamiltonian paths that can be obtained by exchanging at most k 
edges.  The 2.5-opt neighborhood consists of the 2-opt neighborhood together with some of the 
three edge exchanges.  In the experiments given in Section 3, the 2.5-opt neighborhood was used 
to find a near-optimal solution of the static optimization problem.  The 2.5-opt local search 
algorithm was applied to 6-10 starting solutions.  About half of the starting solutions were 
chosen at random and the other half was a high-quality initial solution chosen by a greedy 
heuristic.  The implemented local search algorithm examines all solutions in a neighborhood and 
moves to the best neighbor found, if the current solution is not a local optimum.  The algorithm 
stops once a local minimum is found, and then restarts with another initial solution.  To prevent 
the algorithm from running to long, the number of iterations of the local search algorithm was 
limited to between 10 and 20, for each initial solution.  The number of iterations of the algorithm 
is restricted so that solutions can be found quickly (near real-time) and due to the fact that the 
static optimization problem usually involved a small number of tasks.   



 

19 

 

3.1.3 Distributed Task Scheduling with Real-Time Optimization 
This section provides experimental results for a particular instance of MAV-DTRP.  
Experimental results are given for the CTS and Greedy approaches over the particular instance.  
These results demonstrate that the CTS approach is superior to the Greedy approach for the 
given instance and indicate that it is a viable approach to MAV-DTRP.  The results are given for 
different arrival rates and observance ranges.   
 
The experimental results given later in this section were obtained from ALPHATECH Inc.’s 
Testbed for Taskable Agent Systems (TTAS).  TTAS is a simulation testbed that provides a 
framework for examining autonomous, cooperative, and task-able agents within a simulated 
three-dimensional physical environment.  TTAS provides a standard physically mobile container, 
which represents an unmanned aerial, ground, water surface, or underwater vehicle, that houses a 
Vehicle Agent implementation.  Through application programming interfaces (APIs), which are 
standard for TTAS, the encapsulated Vehicle Agent controls the vehicle’s movement about the 
three dimensional environment and its performance of tasks, such as an UAV’s surveillance and 
reconnaissance tasks.  Standard modules within a TTAS vehicle handle messages, autonomic 
functions (such things as navigation to a waypoint, obstacle and other vehicle collision 
avoidance), task service management, and plan management.  A simple kinematics model 
encapsulates the dynamics of each type of vehicle (air, ground, water surface, underwater).  If an 
experimenter requires higher fidelity dynamics, he can substitute a more complete physics 
engine; however, simple kinetics models are generally sufficient for experimental examination of 
the performance characteristics of the system.  Similarly, TTAS provides simple models for 
sensors, such as various cameras and radars: again, an experimenter can substitute higher fidelity 
implementations if necessary.  Simple tasks, such as static ground sites that only have locations, 
are provided, but since tasks are also agents, an experimenter can implement more general tasks, 
such as moving and evasive tasks that represent groups of troops.  Generally, to carry out 
simulated experiments of a multi-agent system with TTAS, an experimenter need only design 
and implement his agents in conformance with TTAS’s APIs and guidelines (TTAS supplies 
everything else).  MAV-DTRP has been implemented into the TTAS framework in order to 
compare and evaluate different control policies.   
 
Due to an intensive amount of computational time needed for the experimental runs, the results 
of this section are given for a single scenario that is illustrative of many situations.  All of the 
experiments given in this section were run for 16 hours of simulated time, which translated into 
several hours of computational time on a 3.06 GHz Pentium 4.  Every step of the simulation 
corresponds to 0.1 seconds of real-time.  The scenario consists of four UAVs servicing five 
different types of tasks (task types denoted by {y1, y2, y3, y4, y5}) in an AO of size 100km by 
100km.  Every UAV can service a task of type y1, and there is only one UAV that can service 
any of the remaining types of tasks.  Therefore, one UAV has sensors {s1, s2}, a second UAV has 
sensors {s1, s3}, a third UAV has sensors {s1, s4}, and the final UAV has sensors {s1, s5}.  A 
generated task is of type y1 with probability 0.8, and the other task types each occur with 
probability 0.05.  Thus, if λ is the arrival rate for all of the tasks, then λ1 = 0.8λ and λi = 0.05λ 
for all i = 2,3,4,5.  The overall arrival rate was varied between experiments among λ = 1/25s and 
1/15s.  The observance range was also varied between experiments among 40km and 80km.  All 
of the UAVs were defined to have a communication range of 20km and all sensors were accurate 



 

20 

 

within 1km of the location of a task.  Therefore, a task of type yi  is considered to be serviced if a 
UAV, with sensor si, travels to within 1km of the task.   
 
The purpose of these experiments is to compare the results obtained with the CTS approach 
against several baseline algorithmic approaches.  The CTS approach is tested with different 
values of Ts and static objective functions.  For the experiments of this section, the general form 
of the penalty function for task servicing is the following: 
 

P(t) = t + Mmax{0, t – Tw}. 
 

Recall that the static objective function is defined to be the sum of the penalties for servicing all 
of the selected tasks.  Note the correspondence between the static objective function obtained 
from using the above penalty functions and the MAV-DTRP objective function given by 
 

}),0(max{)()()()()(
0

wuu
T

uuu TWMEWEdttfwtMdtttffF
w

−+=−+= ∫∫
∞∞

. 

 
In some cases, the CTS approach is tested with a linear penalty function for task servicing (i.e., 
M = 0), which results in the static optimization problem being equivalent to the MLP.  In this 
case, the purpose of the static optimization problem is to minimize the average waiting time (or 
total waiting time) for the tasks.  The CTS approach is also tested with a piecewise linear penalty 
function for task servicing, so that a penalty is associated with tasks that wait more than a 
prescribed threshold for service (i.e., M > 0).  This penalty function associates a “starving” 
penalty to tasks that have waited more than Tw seconds for service.  The term M is called the 
starving penalty factor and the term Tw is referred to as the starving threshold.   
 
Experiments were conducted for a baseline approach that is called the greedy approach.  In the 
greedy approach, a UAV moves to the closest task it believes to be un-serviced that is not closer 
to another UAV.  If all tasks UAV i believes to be un-serviced are closer to another UAV, UAV i 
will move to the closest task j that it believes is un-serviced and satisfies the following condition: 
all of the UAVs that are closer to task j have other tasks that they are closer to than task j.  This 
approach will produce fairly good results in terms of the average waiting time for the tasks.  In 
fact, there is a result for M/G/1 queues, where the service times are known for customers in the 
queue, which states the minimum processing rule is the policy with the minimum expected 
waiting time for customers.  The minimum processing rule specifies that the server always 
selects the next customer to be the one with the minimum service time.  The M/G/1 result does 
not hold for the MAV-DTRP consisting of one vehicle since “service times” (travel times 
between tasks) are dependent.  The greedy approach is defined to be analogous to the minimum 
processing rule of M/G/1 queues.  



 

21 

 

 
 

AVERAGE WAITING TIME  
Arrival Rate λ = 1/25s, Observance Range = 80km 

Algorithm Rep. #1 Rep. #2 Rep. #3 Rep. #4 Rep. #5 AVG 
Greedy 658.7489 658.6442 646.7785 588.8138 615.4077 633.6786 

CTS: No penalty 
Ts=200 

551.2836 582.0245 572.1302 523.5565 545.4358 554.8861 

CTS: Tw=3000  
M=100 Ts=200 

564.9302 538.3003 579.9729 534.0372 549.7539 553.3989 

CTS: No penalty 
Ts=100 

538.3433 506.8090 525.0964 531.3029 547.6286 529.8360 

CTS: Tw=3000  
M=100 Ts=100 

522.9767 537.0274 561.2702 541.2912 516.3546 535.7840 

  CTS: No penalty 
Ts=50 

531.4476 515.0273 524.0661 500.1980 522.4209 518.6320 

CTS: Tw=3000 
M=100 Ts=50 

547.1313 527.0079 519.4846 527.6279 527.3890 529.7281 

CTS: No penalty 
Ts=25 

581.4458 554.5148 539.7941 537.6909 549.1472 552.5186 

CTS: Tw=3000 
M=100 Ts=25 

525.1788 520.4300 549.6089 530.9533 494.5551 524.1452 

Table 1: Results of the Coordinated Task Scheduling Algorithm 

 
Table 1 shows that the CTS approach gives superior results for the illustrative scenario.  Table 1 
presents results for the case where the arrival rate is equal to λ = 1/25s and all UAVs have an 
observance range of 80km.  The greedy approach and CTS approach (with different values of Ts 
and static objective functions) where tested over five different replications of the scenario.  The 
numbers in the table correspond to the average waiting time obtained from the simulation for the 
associated replication number and approach.  Thus, the values under the column “Rep. #1” give 
the average waiting time for the policies under the first replication.  By giving the results in this 
manner, we can examine how the different approaches performed on exactly the same 
replication.  The results of Table 1 show that the CTS approach significantly outperforms Greedy 
with respect to the average waiting time measure, with an average improvement of about 15 
percent.  Note that the average waiting time is effected by the time between selection points Ts.  
Since this is a dynamic problem it should not be too surprising that the average waiting time is lower for 
the starving penalty case than for the non-penalty case when Ts=25.   
 
In the no penalty case (static problem is minimizing the average waiting time), some tasks wait 
an exceedingly long time for service, in excess of 12000s, which is large compared to the 
average waiting time obtained.  By adding a penalty term for tasks that wait more than Tw=3000 
seconds for service, the number of starved tasks can be greatly reduced without effecting the 
average waiting time significantly.  Table 2 (3) gives the proportion of tasks that wait more than 
a prescribed amount of time for service with the Greedy (CTS) approach.  The values of Table 3 
are representative of all of the CTS approaches in Table 1 that have a penalty term.  Tables 2 and 
3 give values for the same five replications as listed in Table 1.     



 

22 

 

 
GREEDY APPROACH 

Arrival Rate λ = 1/25s, Observance Range = 80km 
Proportion of Tasks Waiting More than a Specified Number of Seconds  

TIME Rep. #1 Rep. #2 Rep. #3 Rep. #4 Rep. #5 AVG 
1000 0.1740 0.1637 0.1570 0.1462 0.1520 0.1586 
1500 0.09929 0.08498 0.08638 0.08364 0.08251 0.08736 
2000 0.06019 0.06094 0.06032 0.05797 0.05477 0.05884 
2500 0.04283 0.04673 0.04462 0.04321 0.04042 0.04356 
3000 0.03138 0.03757 0.03255 0.03058 0.03249 0.03291 
3500 0.02442 0.02902 0.02658 0.02370 0.02624 0.02599 
4000 0.01912 0.02189 0.02021 0.01816 0.01940 0.01976 

Table 2: Greedy Approach to Task Servicing 
 

Looking at the values in Table 3, a CTS approach with a penalty term can significantly reduce 
the number of tasks that wait more than a given amount of time for service.  The CTS approach 
of Table 3 reduces the proportion of tasks that wait more than 3000s for service.  In fact, over the 
five 16-hr simulation runs, there were no tasks that waited more than 3000s for service.  The 
value of Tw=3000s was not chosen at random but based on previous experimentation, which 
indicated that Tw should be set so that approximately 3 percent of the tasks wait more than Tw 
seconds for service with the Greedy approach.  Setting Tw this way usually results in the CTS 
approach, with a starving penalty factor, significantly reducing the proportion of tasks that wait 
Tw seconds for service without drastically increasing the average waiting time.   If the value of Tw 
is set too low, then the proportion of starved tasks or the average waiting time may be high.  If 
many tasks have waited more than Tw seconds for service (which is likely to happen if Tw is too 
low), then in an effort to service all the starved tasks first, the vehicles may choose paths that 
result in a significantly extended waiting time for the non-starved tasks (to the extent that they 
also become starved in the sense that they wait more Tw seconds for service).   
 

CTS APPROACH WITH Tw=3000, M=100 Ts=50 
Arrival Rate λ = 1/25s, Observance Range = 80km 

Proportion of Tasks Waiting More than a Specified Number of Seconds 

TIME Rep. #1 Rep. #2 Rep. #3 Rep. #4 Rep. #5 AVG 
1000 0.1459 0.1232 0.1270 0.1321 0.1321 0.1321 
1500 0.0773 0.0646 0.0689 0.0703 0.0692 0.0701 
2000 0.0480 0.0463 0.0440 0.0504 0.0404 0.0458 
2500 0.0360 0.0309 0.0280 0.0328 0.0258 0.0307 
3000 0 0 0 0 0 0 
3500 0 0 0 0 0 0 
4000 0 0 0 0 0 0 

Table 3: Results of the Coordinated Task Scheduling Algorithm with a Penalty 
 
 



 

23 

 

Table 4 gives results in the case where the observance range is 40km; everything else about the 
experiments is the same as for Table 1, including the replications.  As would be expected, the 
performance of all of the approaches is worse when the observance range is reduced from 80km 
to 40km.  An interesting aspect to note about the results in Table 4 is that the difference between 
the Greedy approach and the CTS approaches is significantly less than in Table 1.  When the 
observance range is 40km, the CTS approaches only outperform Greedy by about 4 percent as 
compared to about 15 percent when the observance range is 80km.  This may be an indication 
that the CTS approach performs better, relative to Greedy, if each vehicle has more information 
about its environment.  In general, this seems to be an intuitive notion since future planning 
becomes more difficult as the uncertainty in the environment increases and the CTS approach 
maintains a future path plan.  
 

AVERAGE WAITING TIME  
Arrival Rate λ = 1/25s, Obs. Range = 40km 

Algorithm 1 2 3 4 5 AVG 
Greedy 691.6044 724.8982 718.2788 695.8353 738.2379 713.7709 

CTS: Tw=3000  
M=100 Ts=100 

674.8557 676.4499 690.0139 643.7292 708.2890 678.6675 

CTS: Tw=3000  
M=100 Ts=50 

668.9150 694.9385 698.8573 674.2893 711.5369 689.7074 

CTS: Tw=3000  
M=100 Ts=25 

722.7441 691.0842 706.9746 644.9454 678.5429 688.8582 

Table 4: The Measured Effect of a Smaller Observation Range 

The results in Table 5 are for an arrival rate of λ = 1/15s; everything else about the experiments 
is the same as for Table 1.  The CTS approach outperformed Greedy by an average of about 11 
percent when the arrival rate is 1/15s.  In two cases (Ts = 50s and 100s), the average waiting time 
is better when there was a starving penalty factor (i.e., M > 0) as compared to the case where M = 
0.  The CTS approach with a starving penalty factor (i.e., M > 0) also reduced the proportion of 
tasks waiting more than Tw = 4500 seconds.  The value of 4500s was chosen since about 3 
percent of the tasks wait that long for service in experiments for the Greedy algorithm and CTS 
approaches with no starving penalty factor (i.e., M = 0).   The CTS approach with Ts = 100 and 
M = 100 resulted in a proportion of 0.0002 of the tasks waiting more than Tw = 4500s for service, 
whereas the Greedy approach had a proportion of 0.0318 of the tasks waiting more than Tw = 
4500s.    



 

24 

 

 
AVERAGE WAITING TIME 

Arrival Rate λ = 1/15s, Obs. Range = 80km 

Algorithm 1 2 3 4 5 AVG 
Greedy 1000.4380 914.3956 983.0897 928.4901 894.1051 944.1037 

CTS: No penalty 
Ts=200 

853.5781 825.2096 904.6867 824.2652 803.8134 842.3106 

CTS: Tw=4500 
M=100 Ts=200 

828.0480 854.2920 894.7123 877.9139 818.3169 854.6566 

CTS: No penalty 
Ts=100 

839.4062 817.6447 853.4182 851.8693 812.6696 835.0016 

CTS: Tw=4500 
M=100 Ts=100 

828.5940 796.7627 857.5051 841.5631 801.5363 825.1922 

 CTS: No penalty 
Ts=50 

842.8012 835.5480 855.1135 825.0411 853.4687 842.3945 

CTS: Tw=4500 
M=100 Ts=50 

846.9371 852.5754 843.5708 861.9742 796.5729 840.3261 

CTS: No penalty 
Ts=25 

861.4406 834.5185 841.7470 837.0753 809.5655 836.8694 

CTS: Tw=4500 
M=100 Ts=25 

844.8091 861.3758 829.3821 857.8089 824.2358 843.5223 

Table 5: Comparison of Results for Several Task Scheduling Algorithms 
The experimental results of this section demonstrate the validity of CTS in addressing MAV-
DTRP.  CTS outperforms the Greedy approach by about 15 percent when the arrival rate is λ = 
1/25s and 11 percent when the arrival rate is λ = 1/15s.  The performance of CTS is related to the 
uncertainty each vehicle faces in the environment.  For larger communication and observance 
ranges, the performance of CTS is improved, indicating that CTS is effective when each vehicle 
has some knowledge about other vehicles.   



 

25 

 

3.1.4 Discussion of Analytical Results 
In this section, the average waiting times (or bounds on the average waiting times) of several 
control policies are computed analytically and compared with the experimental results obtained 
in Section 3.  All of the policies given in this section are defined specifically for the MAV-DTRP 
instance of Section 3.  The purpose of this is to obtain upper bounds on the average waiting time 
of an optimal policy for MAV-DTRP and therefore be able to assert with some assuredness that 
the CTS approach is effective (by comparing its results with the bounds).  In other words, it is 
demonstrated that the experimental results of Section 3 for the CTS approach have superior 
performance in terms of average waiting time as compared to the policies in this section.  The 
computed average waiting times for the policies in this section serve as a benchmark and provide 
insight into the effectiveness of CTS. 
 
The paper of Bertsimas and van Ryzin [2] introduce the DTRP and analytically compute the 
average waiting time for several policies.  The results in this paper are applied here to 
analytically compute the average waiting time of several policies for MAV-DTRP.  Recall that 
for the DTRP the tasks (customers) require an independent and identically distributed amount of 
on-site service time.  Bertsimas and van Ryzin [2] also show that a specified policy is 
asymptotically optimal in light traffic (λ s → 0, s is the expected on-site service time) and show 
other policies are within a constant factor of the optimal policy in heavy traffic (λ s → 1).   
 
The first policy we examine is a first-come first-serve policy with randomized assignments 
(FCFS-RA).  In this policy, the dispatcher randomly assigns tasks of type y1 to the vehicles.  That 
is, when a task of type y1 is generated, it is assigned to each vehicle with probability 1/m (where 
m is the number of vehicles that can service that task).  A vehicle will only service tasks that 
have been assigned to it.  A vehicle services the tasks that have been assigned to it in a FCFS 
fashion.  Applying FCFS-RA to the scenario of Section 3, which consists of 4 vehicles, a system 
is obtained that is equivalent to 4 single-server queues, where the arrival rate for each queue is 
given by λ/4.  From Bertsimas and van Ryzin [2], the average waiting time can be computed for 
tasks assigned to vehicle i (traveling at a constant rate of 1km/s) with the following formula: 
 

 
( ) Ac

Aci
Aci

W 1
1

2

)(12
)(

+
−

=
λ
λ  (1) 

where c1≈0.52, c2=1/3, λ(i) is the arrival rate for tasks assigned to vehicle i, and A is the area of 
Ω.  The AO Ω must be a square in order for this formula to hold.  The term Ac1 is equal to the 
expected distance between two uniformly and independently distributed points in a square of 
area A.  The term c2A corresponds to the expected value of the squared distance between two 
uniformly and independently distributed points in a square of area A.  In the experiments of 
Section 3, the AO is a 100km × 100km square where the vehicles travel at a rate of 0.156km/s.  
This set-up is equivalent to the vehicles traveling in a region that is a (100/0.156) km × 
(100/0.156)km square, where the vehicles travel at a rate of 1km/s.  A value of 641.02562 ≈ 
(100/0.156)2 will be used for the value of A in all of the formulas of this section.  Formula (1) for 
the average waiting time is the well-known Pollaczek-Khinchin (P-K) formula [14].  The original 
proof of this result assumes that the service times of the queue are independent and identically 
distributed.  In FCFS-RA, the service times, which correspond to the distances between two 



 

26 

 

tasks, are not independent, but they are identically distributed.  Bertsekas and Gallager [13] show 
that the P-K formula still holds in this situation.  The stability condition for FCFS-RA 
is 1)( 1 <Aciλ .  Thus, the stability condition is simply stating that the expected service time must 
be less than the expected task inter-arrival time.  For the scenarios of Section 3, FCFS-RA queue 
is not stable, which implies that the average waiting time will converge to infinity in the long 
run.  Assuming there are four vehicles, then each vehicle will behave as a single-server queue 
with a mean service time of 0.52(641.0256) = 333.3333s and a task inter-arrival mean of 60s (if 
λ = 1/15s) or 100s (if λ = 1/25s).  The queue is not stable since the mean service time is greater 
than the task inter-arrival mean.   
 
There are some policies that are stable for any arrival rate, assuming that they are parameterized 
correctly.  One such approach is a region partitioning scheme.  Assume that tasks are randomly 
assigned to the vehicles in the same manner as described for FCFS-RA.  The AO Ω is partitioned 
into q2 cells of equal size (imagine taking the square region and slicing it with q rows and 
qcolumns), where q > 1 parameterizes the policy.  If q is even, a vehicle can start in one cell, 
travel through all of the remaining cells and return to the starting cell, where each cell is visited 
exactly once per cycle (see figure 1a).  The formula that is given for the average waiting time of 
this policy assumes that q is even.  Each of the four vehicles will behave independently of each 
other and only service tasks that have been assigned to it.  A vehicle will start in a cell, service 
all tasks in the cell that have been assigned to it, and then move to the next cell.  A vehicle 
services the tasks in a cell in a FCFS fashion.  When a vehicle travels to an adjacent cell, it 
moves along a straight line to a location that is “projected” from its current location (see figure 
1b).  This is required to facilitate the mathematical analysis.  This policy is referred to as the 
first-come first-serve policy with randomized assignments and partitioning (FCFS-RA-P).   
 

 
Figure 2: Cell partitioning and UAV movement 

 

 

 

Figure 1a: Partitioning 
approach with a possible 

Figure 1b: Projection of point 
from one cell to an adjacent 

Current cell Next cell

A Projection of A 



 

27 

 

For any arrival rate, there exist values of m such that the resultant policy is stable.  The stability 
condition for this policy is   

Aicm )(1λ> , 
 

where )(iλ  is the arrival rate of tasks being assigned to vehicle i and assuming the vehicles travel 
at a rate of 1km/s.  If the stability condition is satisfied and the vehicles travel at a speed of 
1km/s, the average waiting time for vehicle i is computed with the formula 
 

)/(
))/()/)((1(2
)/()/)((1

))/()/)((1(2
)/()/)((

1
1

1
2

1

2
2 qAcAq

qAcqi
qAcqi

qAcqi
qAcqi

W +
−

−
+

−
=

λ
λ

λ
λ . 

 
In Table 6, the average waiting time for this policy is given for the arrival rates of Section 3, 
where q is chosen to give the minimal average waiting time.  For the scenario of Section 3, note 
that the queues associated with each of the four vehicles are statistically equivalent and all have 
the same arrival rate and average waiting time.   

 
Arrival Rate Avg. Waiting Time “optimal” q 

1/25s 4315.8929 7 
1/15s 7142.8629 11 

Table 6: Average Waiting Time for First-Come First-Serve Policy with Randomized 
Assignments and Partitioning 

Another policy that is stable for any arrival rate consists of forming tasks into sets and servicing 
tasks in each set via an optimal TSP tour.  For this policy, an upper bound is given for the 
average waiting time.  Again, tasks are randomly assigned to the vehicles in the same manner as 
for FCFS-RA and FCFS-RA-P.  The vehicles will each operate out of a strategically located 
depot (center of square region Ω).  A vehicle will wait at the depot until qtasks have been 
assigned to it.  At that point, the vehicle will service the qtasks by following an optimal TSP tour 
through the tasks.  Each subsequent set of q tasks will be serviced in the same manner.  This 
policy will be referred to as the TSP-Randomized Assignments (TSP-RA) approach.  The 
stability condition for this policy is that    

 
222 )0256.641()4/)(( TSPiq βλ> ,  

 
where 72.0≈TSPβ  and )(iλ  is the arrival rate of tasks being assigned to vehicle i.  When the 
stability condition is satisfied, an upper bound for the average waiting time WTSP is computed by 
 

 qA
qi

q
qAi

iqW TSP
TSP

TSP β
λβλ

λ
++

−
≤

)/)((2)/)(1(2
))(/( , see [2].   

 



 

28 

 

The upper bound for the average waiting time is given in Table 7, together with the 
corresponding optimal value of q.  In other words, the value of q is chosen to give the least upper 
bound. 

Upper  Bound on Average Waiting Time for TSP Approach 
Arrival Rate Upper Bound “optimal” q 

1/25s 4180.5490 26 
1/15s 6285.9033 67 

Table 7: Upper Bound on the Average Waiting Time for the Traveling Salesman Problem 
Approach 

Comparing the values in Tables 6 and 7 with the results of Section 4, it is apparent that the CTS 
and Greedy approaches are providing high-quality solutions to MAV-DTRP.  The average 
waiting time for FCFS-RA-P and upper bound for the TSP-RA are approximately eight times 
larger than the CTS approach.  Obviously, an argument could be made that the approaches of this 
section are naïve or simplistic, but the values in the table do serve as a benchmark and 
demonstrate that the CTS approach is an acceptable algorithm.  The average waiting time for 
FCFS-RA-P and the upper bound on the average waiting time for TSP-RA cannot be used as an 
explicit upper bound on the average waiting time for an optimal MAV-DTRP approach since 
MAV-DTRP is a finite time horizon problem.  However, the experiments of Section 3 were run 
for a significant amount of time (16-hr simulated runs) so that a comparison with the results of 
this section is reasonable.  
 



 

29 

 

3.1.5 Conclusion and Future Directions 
Applications that necessitate the need for distributed control are becoming more commonplace 
and it is now necessary to begin the process of developing and studying techniques that can 
handle these challenging problems.  This paper introduced a problem where the cost of 
implementing a centralized control approach is prohibitive due to limitations on communication 
and computational power.  A distributed control approach (CTS) was presented that 
demonstrated superior performance over several baseline approaches.  The CTS approach 
demonstrates that under certain scenarios (such as the scenario of Section 3) it is better to allow 
for some look-ahead in terms of future planning.  Due to the dynamic nature of the MAV-DTRP, 
it is not simply intuitively obvious that a “future-planning” approach such as CTS can 
outperform the Greedy approach.   
 
An interesting aspect of MAV-DTRP was discovered through experimental results on an 
illustrative scenario.  The experimental results demonstrate that, in certain situations, the 
proportion of starved tasks can be reduced without increasing the average waiting time of the 
control policy.  This aspect of MAV-DTRP is analogous to the findings of Powell et al. [3] who 
show it is better to find sub-optimal solutions of the static optimization problem, in certain 
situations.  If the objective of an MAV-DTRP instance is to minimize the average waiting time, 
then in some situations it is better to define the static optimization problem to minimize the 
average waiting time plus a non-zero penalty term rather than just the average waiting time.   
This paper also introduced a new combinatorial optimization problem GMLP that generalizes the 
MLP.  GMLP is an interesting combinatorial optimization problem that requires further 
investigation.  Since this is a new problem, there is little known about its complexity.  From the 
lemma of Section 2, the problem can be approximated in polynomial time for any class of 
instances that restrict the penalty functions to be bounded between two linear functions.  An 
interesting open question is whether or not the problem can be approximated in polynomial time, 
within some factor, for non-linear penalty functions, such as quadratic functions.  We conjecture 
that GMLP is APX-complete for the case consisting of quadratic functions.  Another desirable 
research goal is to develop new algorithms for GMLP and to examine if it is possible to develop 
an algorithm that performs reasonably well, regardless of the form of the penalty functions.  In 
other words, can the algorithm perform well even when it does not know the form of the penalty 
functions?  It is also desirable to develop algorithms for the particular case where the penalty 
functions are piecewise linear.   
 
Since this is an emerging research area, the future avenues of research are long and diverse.  One 
possible research direction is to develop other algorithms for MAV-DTRP that introduce other 
aspects of the problem.  For example, the CTS approach (as given in this paper) does not use 
estimation for vehicle locations that are outside of the observance range to aid in the selection of 
tasks.  A future research direction could be to determine if the performance of CTS can be 
improved significantly by using estimation for other vehicle locations.  Note that, in all 
likelihood, good estimates of vehicle locations can only be maintained for a short time after 
vehicles leave the observance range; it is very difficult to estimate the location of a vehicle that 
has not been in the observance range for a long time.  Many aspects to this problem were left out 
of this paper/research to emphasize the plausibility of distributed approaches to MAV-DTRP.  
Another direction of future research is to consider more realistic problem formulations by 
considering task priorities and time windows.  In this paper, the problem considered all tasks to 



 

30 

 

be of equal value; there were no task priorities.  A natural extension to the work in this paper is 
to consider the problem where the tasks have different penalty functions.  This paper did 
consider soft time windows in the sense that there was a penalty for tasks that wait more than a 
prescribed amount of time for service.  Future work could extend this to look at situations where 
there is also a penalty for servicing a task before a given time.  To handle this problem, a penalty 
function for a task can be defined to be large for times outside of the task’s time window.      



 

31 

 

3.1.6 References 
[1] D.J. Bertsimas, G. Van Ryzin, 1993, “Stochastic and Dynamic Vehicle Routing in the 

Euclidean Plane with Multiple Capacitated Vehicles,” Operations Research 41(1) 60-76.  
[2] D.J. Bertsimas, G. Van Ryzin, 1991, “A Stochastic and Dynamic Vehicle Routing in the 

Euclidean Plane,” Operations Research 39(4) 601-615.  
[3] W.B. Powell, M.T. Towns, A. Marar, 2000, "On the Value of Globally Optimal Solutions for 

Dynamic Routing and Scheduling Problems," Transportation Science 34(1) 50-66. 
[4] S. Arora, G. Karakostas, 2003, “Approximation Schemes for Minimum Latency Problems,” 

SIAM Journal on Computing 32(5) 1317-1337. 
[5] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of                  

NP-Completeness (W.H. Freeman and Company, New York, 1979). 
[6] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Protasi, 

Complexity and Approximation: Combinatorial Optimization Problems and Their 
Approximability Properties (Springer-Verlag, Berlin, 1999). 

[7] G. Ghiani, F. Guerriero, G. Laporte, R. Musmanno, 2003, “Real-Time Vehicle Routing: 
Solution Concepts, Algorithms and Parallel Computing Strategies,” European Journal of 
Operational Research 151(1) 1-11. 

[8] L. Bianchi, 2000, “Notes on Dynamic Vehicle Routing – The State of the Art,” Proceedings 
of ANTS (Ant Colonies to Artificial Ants) 2000: Second International Workshop on Ant 
Algorithms 59-62. 

[9] W.B. Powell, W. Snow, R. K. Cheung, 2000, "Adaptive Labeling Algorithms for the 
Dynamic Assignment Problem," Transportation Science, 34(1) 67-85. 

[10] D.S. Johnson, L.A. McGeoch, 1997, “The Traveling Salesman Problem: A Case Study in 
Local Optimization,” in Local Search in Combinatorial Optimization, E.H.L. Aarts, J.K. 
Lenstra (eds.), John Wiley and Sons, London, UK, 215-310. 

[11] K. Moizumi, G. Cybenko, 2001, “The Traveling Agent Problem,” Mathematics of Control, 
Signals and Systems 14(3) 213-232. 

[12] P. Kilby, P. Prosser, P. Shaw, 1998, “Dynamic VRPs: A Study of Scenarios,” APES 
Technical Report APES-06-1998, September 1998  

[13] D. Bertsekas, R. Gallager, 1987, Data Networks, Prentice Hall, Englewood Cliffs, N.J. 
[14] L. Kleinrock, 1976, Queuing Systems, Vol. 1: Theory, John Wiley, New York.  
[15] D.J. Bertsimas, G. Van Ryzin, “Stochastic and dynamic vehicle routing with general 

demand and inter-arrival time distributions. Advanced Applied Probability, 25:947-978, 
1993 

[16] Psaraftis, “Dynamic Vehicle Routing: Status and Prospects,” Annals of Operations 
Research, 61, 143-164, 1995 

[17] Gendreau, M., G. Laporte and R. Seguin, 1996a, “Stochastic Vehicle Routing,” Invited 
Review, European Journal of Operational Research 88, pp. 3-12. 

[18] J.D. Papastavrou. “A stochastic and dynamic routing policy using branching processes with 
state dependent immigration,” European Journal of Operational Research, 95:167-177, 
1996. 

[19] Minkoff A.S., “A Markov decision model and decomposition heuristic for dynamic vehicle 
dispatching,” Operations Research 41 77-90, 1993. 

[20] D. Bertsimas and D. Simchi-Levi, “A new generation of vehicle routing research: robust 
algorithms, addressing uncertainty,” Operations Research 44, 1996, 286-304. 



 

32 

 

[21] Powell, W.B., “A stochastic formulation of the dynamic assignment problem, with an 
application to truckload motor carriers,” Transportation Science 30, 195-219 (1996) 

[22] M. Gendreau, F. Guertin, J.Y. Potvin, R. Seguin, “Neighborhood search heuristics for a 
dynamic vehicle dispatching problem with pick-ups and deliveries,” technical report 
CRT-98-10, Center of Transportation Research, University of Montreal, 1998 

[23] H. N. Psaraftis, “Dynamic vehicle routing problems,” in Vehicle Routing: Methods and 
Studies, B.L. Golden and A.A. Assad (eds.), 223-248, Elsevier Science Publishers, 1988.  

[24] A.C. Regan, J. Herrmann, and X. Lu, “The Relative Performance of Heuristics for the 
Dynamic Traveling Salesman Problem,” proceedings of the 81st meeting of the 
Transportation Research Board, 2002. 

[25] S. Ichoua, M. Gendreau, J.Y. Potvin,  “Exploiting Knowledge about Future Demands for 
Real-Time Vehicle Dispatching,” Centre de Recherche sur les Transport, Univerity of 
Montreal, 2000. 



 

33 

 

4 The TASK Project Wide Demonstration 
At the direction of the DARPA Program Manager, AIT facilitated a project-wide demonstration 
at which all TASK Principal Investigators made available demonstrations of the results of their 
research efforts supported by the TASK program.  The demonstration took place August 4, 2004 
in the ballroom of the Hotel Washington, Washington, DC.  The DARPA Program manager 
invited potential guests.  The following table lists those who attended 
.  

Last Name First Name Organization Email 
Cobble Kevin L-3 Communications Integrated 

Systems 
Kevin.L.Cobble@L-3com.com 

DiPierro Gus JTRS JPO gus.dipierro@hqda.army.mil 
Frazier Tiffany ALPHATECH tiff@dc.alphatech.com 
Jones Harold ALPHATECH hjones@dc.alphatech.com 
Lala Jaynarayan Raytheon Company Jay_Lala@raytehon.com 
Moore Bill US ARMY INTELLIGENCE CENTER WILLIAM.MOORE@HUA.ARMY.MIL 
Nagy James AFRL/IF James.Nagy@rl.af.mil 
Naqvi Waseem Raytheon Waseem_Naqvi@raytheon.com 
Rzepka Bill AFRL - Rome rzepkaw@rl.af.mil 
Schoenwald Josh The Ohio State University / Army 

Research Laboratory 
iokua@mac.com 

Swan Stephen TSM FCS steve.swan@hqda.army.mil 
Tittle James Ohio State University / Dept. of 

Industrial Eng 
tittle.2@osu.edu 

Trent Stoney The Ohio State University / Army 
Research Laboratory 

stoney.trent@us.army.mil 

Veney David PM Soldier Warrior David.Veney@US.Army.Mil 
Voshell Martin C/S/E/L Ohio State Univ. mvoshell@mac.com 
Wagner Tom DARPA / IPTO twagner@darpa.mil 
Waszak Martin NASA Langley Research Center m.r.waszak@larc.nasa.gov 
Zachery Randy Army Research Office randy.zachery@us.army.mil 
Zwan Allen BAE Systems allen.zwan@baesystems.com  

   

Table 8: Attendees of the TASK Project-wide Demonstration 



 

34 

 

4.1 Organization of the Demonstration 
Through discussions at an OEF Demonstration Workshop held at the University of Texas at 
Austin, July 1-2, 2003 and numerous teleconferences, all facilitated by AIT , the Principal 
Investigators agreed that, at a minimum, each demonstration would show how the Principal 
Investigator’s research might handle a specific set of events in a larger military operation 
scenario based upon the OEF.  A narrative integration, which consisted of the timeline annotated 
with events and a description of the military operations, provided continuity between the 
individual demonstrations.  When they entered the demonstration, attendees received a handout 
of the narrative integration, and could use it sample the individual organizations’ demonstrations 
in any order.  
 
The TASK Demonstration had purely software-based as well as hardware-based demonstrations.  
The researchers presenting hardware-based demonstration used a variety of robotic platforms, 
and, in general, moved what were purely software-based research results to autonomous, 
cooperative  robotic platforms.  Several groups offered both hardware and software 
demonstrations.  The following table contains a list of the Principal Investigators’ organizations 
and the research area demonstrated. 
 

Organization Research Area WWW Address 
ALPHATECH Inc. Coordination in Multi-Agent 

Systems 
http://www.alphatech.com 

Dartmouth College Agent-Based Systems 
Engineering 

http://actcomm.thayer.dartmouth.edu/task/ 

Hampshire College Multi-type, Self-adaptive Genetic 
Programming for Complex 
Applications 

http://hampshire.edu/lspector/darpa-selfadapt.html

Metron, Inc. Agent-Based Computing http://www.metsci.com/abc/ 
Massachusetts 
Institute of 
Technology/BBN 

Creation, Modeling, and Analysis 
of Adaptive Agent Systems 

http://omar.bbn.com/MIT/AdaptiveAgents/ 

Santa Fe Institute Dynamics of Learning http://www.santafe.edu/~dynlearn/ 
Stanford University Control and Coordination with 

Game Theoretic Agents 
http://task.stanford.edu/ 

University of Illinois at 
Urbana-Champaign 

A Parametric Model for Large-
Scale Agent Systems 

http://osl.cs.uiuc.edu/ 

University of 
Massachusetts  

Analytical Tools for Agent-Based 
Computing 

http://kdl.cs.umass.edu/ 

University of New 
Mexico 

Computation in the Wild: Moving 
Beyond the Metaphor 

http://www.cs.unm.edu/~immsec/ 

University of 
Southern California 
Information Sciences 
Institute 

Mathematical Modeling of Multi-
Agent Systems 

http://www.isi.edu/~lerman/projects/task/ 

University of Texas at 
Austin 

Multi-Scale Behavioral Modeling 
and Analysis Promoting a 
Fundamental Understanding of 
Agent-Based System Design and 
Operation 

http://www.lips.utexas.edu/UTAustin/AgentDesign/

Table 9: TASK Demonstration Organizations and Research Areas 



 

35 

 

 
4.2 The Military Scenario for the TASK OEF Demonstration 
The military scenario was a simple extension of the problems of the TASK OEF.  The mission 
consists of a set of medium and small UAV sensor platforms and networks of Unattended 
Ground Sensors (UGSs) that perform surveillance and reconnaissance services on stationary and 
moving ground targets performing surveillance and reconnaissance services on stationary and 
moving ground targets.  For the TASK OEF demonstration, the purpose was for the Principal 
Investigators to demonstrate the UAVs and UGSs operating as autonomous entities in a multi-
agent system and handling the situational awareness activities through their approaches to 
cooperation and adaptation.  The mission has a definite beginning and end and has a finite 
duration.  The multi-agent system of UAVs and UGSs must maintain specified levels of 
accuracy for target identification, location, and velocities within sub-areas of the area of 
operations, and the information for a sub-area must be no older than a specified age.  The 
accuracy requirements, age limits, and sub-area boundaries change as the mission evolves.  The 
location and identification requirements have high accuracy since the area of operations includes 
both hostile and non-hostile targets.  Data and information fusion, if needed, were to be mocked-
up.  AIT filled out this skeletal mission scenario for those Principal Investigators who required 
more details.   



 

36 

 

 
Organization Demo Participants Other 

ALPHATECH Larry Roszman Angell Rosa 
 Derek Armstrong Tiffany Frazier 
 Aram Khalili Hal Jones 
 Gwen Hickling Chuck Morefield 
 Danny Russell  
BBN/MIT Oliver Selfridge  
 Brett Benyo  
 David Montana  
 Wally Feurzeig  
Dartmouth George Cybenko  
 Alex Jordan  
 Wayne Chung  
 Valentine Crespi  
 Daniela Rus  
Hampshire Lee Spector  
Metron Greg Godfrey Tom Mifflin 
 Aren Knutsen  
 John Cunningham  
SFI Jim Crutchfield  
 Michael Schippling  
Stanford Ryan W. Porter  
 Yoav Shoham  
UIUC Gul Agha  
 Tom Brown  
 MyungJoo Ham  
UMass David Jensen  
 Andrew Fast  
UNM Hajime (Jim) Inoue  
 Stephanie Forrest  
USC ISI Kristina Lerman  
UTAustin Suzanne Barber  
 Tom Graser  
 David Han  
 Dung Lam  

Table 10: Participants in the TASK OEF Demonstration 
 
4.2.1 The Area of Operations 
The area of operations is stationary and well-defined with mixed terrain.  A river valley runs 
north-south with feeder streams flowing from high mountains to the north and west.  The valley 
has low mountains to the east and south, which slope to plains.  The valley has farming and 
grazing with pockets of forest.  The mountain slopes are forested.   
 
Villages are scattered throughout valley, and a medium sized city occupies its southeast end.  
Well-maintained, hard-topped roads connect the villages and city.  Jeep and walking trails extend 
into both high and low mountains.   Civilian automobiles, trucks, busses, farm equipment, etc. 



 

37 

 

travel the roads.  The community has a modern infrastructure, which includes an electric grid, 
distributed natural gas, wired and cellular telephone, buried fiber-optics, and the Internet.  Both 
the city and the villages have small manufacturing factories.   
 
Outside hostile forces have occupied parts of the valley.  The friendly forces are not native.  
Several villages are sympathetic to occupying hostile forces, and the remainder of population is 
friendly to neutral toward friendly forces.  The hostile forces’ supply lines traverse the western 
high mountains and northeastern low mountains.  
 
Within the area of operations, specific sub-areas may be known by the friendly forces to contain 
possibly potential hostile targets, but the specific existence, location, and identification of actual 
targets is unknown.  Some sub-areas may be known to present a high potential threat level to 
surveillance UAVs, although specific threats such as ground-to-air missiles are unknown.  The 
occurrence and definition of sub-areas that present threats and potential reconnaissance and 
surveillance targets will change throughout the mission.  The base-station communicates these 
changes to the multi-agent system of UAVs as communications permit.  In addition, threats to 
UAVs may appear suddenly – popup – in sub-areas assumed to have a low threat level. 
 

4.2.2 Reconnaissance and Surveillance Targets 
The reconnaissance and surveillance targets – known and unknown, stationary and moving – will 
appear and disappear throughout the mission.  A base-station, which represents the central 
command node, communicates to the UAV multi-agent system the locations of known targets 
and regions that may contain potential hostile targets and receives the surveillance and 
reconnaissance data from the multi-agent system of UAVs as communications permit. The 
targets can present the following problems: 
1. Some targets have accurately known locations but must be identified to determine to type and 

possible hostile nature  
2. Some targets’ locations are inaccurate or erroneous, must be determined accurately, and must 

be identified as well 
3. Some targets require simultaneous location-identification-velocity surveillance by two 

different UAVs: for example, stereoscopic SPOT Synthetic Aperture Radar (SAR) or 
triangulating MTI 

4. Some targets are time critical, that is, they must be serviced within a particular time window 
 
Moving targets can present the additional problems. 
1. Targets, initially stationary, may move, and targets, initially moving, may stop moving 
2. The identification of moving targets must be sufficiently to differentiate hostile from non-

hostile, such as a farm truck from a military truck 
3. Moving targets may attempt to evade surveillance  
 
4.2.3 Communications 
Inter-UAV communications are both a necessity and a limitation for coordinated and adaptive 
surveillance and reconnaissance by a multi-agent UAV systm of popup targets, which can be 
hostile.  AIT introduced a few limitations and potential problems into the military scenario’s 
communications description.  First, all a UAV’s communicates with other UAVs, sensors, and 



 

38 

 

base-stations are only line-of-sight and can occur within only a maximum radius.  Due to geo-
spatial topology, atmospheric conditions, jamming, higher priority messaging, and a 
technologically sophisticated hostile force, the following events may occur: 
1. The maximum communications distance for a UAV may change unexpectedly 
2. All inter-UAV and base-station communications may be lost completely for finite durations 
3. Any individual message may be garbled, partially lost, or totally lost 
4. The maximum bandwidth available to a UAV may decrease or increase unexpectedly 
5. False messages may be transmitted by the hostile forces 
6. Messages may be intercepted by hostile forces. 

4.2.4 Unattended Ground Sensor Networks 
AIT added Unattended Ground Sensor (UGS) Networks to the scenario to provide an additional 
dimension that mirrors one of the new directions of military intelligence data gathering, to 
introduce a multi-agent system that operates on a smaller computational scale that than 
represented by the UAV multi-agent system, and to introduce cooperative interactions between 
multi-agent systems.  The UGSs in this scenario have low-powered transceivers similar to the 
Mica Motes of the DARPA NEST project.  UGS networks may be spread across some sub-areas.  
Some UAVs are equipped to communicate with the UGS networks.  The geo-location of some 
the sensors may be known, and the UAVs can assist with some of the sensors that have unknown 
locations determine their approximate locations if TASK coordination research results are 
demonstrated. 
 
As with all communications, communications between nodes of an UGS network and a UAV 
may be disrupted by weather or jamming.  Due to either equipment failure or hostile action, 
individual sensors may disappear from an UGS network.  Some individual sensors in a network 
may be mobile over small distances.  In general, such movement is for purpose of establishing or 
maintaining the situational awareness accuracy. 

4.2.5 The Scenario Timeline 
Since several of the Principal Investigators research focused on the design of multi-agent 
systems to meet specific task performance demands and others focused on evaluation of how 
effectively the multi-agent system performed, AIT placed both pre- and post- mission execution 
periods in the timeline.  During the pre-execution period, the Task Force Commander states the 
details of the mission.  This statement includes communication to the UAVs the following: 
1. The planned duration of the mission 
2. Lists of accuracies and lifetimes to be maintained for the situational awareness of the various 

sub-areas of the area of operations 
3. Lists of known ground sites that require surveillance 
4. Lists of sub-areas that may contain unknown targets 
5. Lists sub-areas that may contain threats 
6. Lists sub-areas that are known to contain threats. 
 
With this information the multi-agent system designers or, if possible, the UAV multi-agent 
system itself, develop the initial system-wide plan to accomplish the mission. Then the UAVs 
disperse begin their tasks.  Those UAVs that interact with the UGS networks assist their 
networks in geo-spatial location of individual nodes if necessary. 



 

39 

 

 
During mission execution the UAV multi-agent system, performs a variety of normal activities. 
1. A UAV performing surveillance of a known ground broadcasts the data it gathered to all 

UAVs with which it can communicate and, if possible, to the base-station 
2. A UAV, finding a previously unknown target while performing reconnaissance, broadcasts 

the discovery, within communications limits, to all UAVs and the base-station 
3. The base-station broadcasts the locations of new known location targets to all UAVs as soon 

they become available. 
4. UAVs coordinate within the multi-agent system to perform surveillance of targets that 

require multiple observations, that is, cross-mission tasking targets 
5. The UAVs coordinate within the multi-agent system to maintain the required accuracy and 

lifetime requirements for all sub-areas within the area of operations. 

4.2.6 Disruptive Events 
Besides the appearance and disappearance of possible targets and hostile areas and changing 
accuracy requirements, the UAV and UGS multi-agent systems must adapt to unpredictable 
disruptive events.  These disruptive events for the TASK OEF demonstration focused on 
communications and equipment degradation and failure. 
 
Because of jamming, communications between all or select UAVs, UAVs and the base-station, 
and UAVs and UGS networks can be disrupted.  During a disruptive event, the UAVs should 
continue to perform their usual surveillance, reconnaissance, and tracking tasks.  Each UAV or 
UGS stores data as well as its capabilities permit, and in accordance with its contribution to the 
situational awareness accuracy and lifetime requirements.  Once the jamming ceases and all 
communications are restored, UAVs broadcast their stored data, retrieve and process data from 
the UGS networks, and coordinate with in multi-agent system to evaluate the current situational 
awareness accuracies and lifetimes and to determine re-tasking.  A major coordination problem 
for the UAV multi-agent system to effectively coordinate immediately after communications 
restoration when the communications channels may be so overwhelmed that data and 
information may be lost.  Similar communications disruption problems occur during storms and 
when landscape such as mountains, trees or buildings impede lines-of-sight.   



 

40 

 

A UAV may leave the multi-agent system because of hostile action or equipment failure; in 
which case, the UAVs in the system must coordinate an adaptation that is appropriate to 
maintaining the required situational awareness accuracies and lifetime limits.  New UAVs 
joining the multi-agent system necessitate similar activities.  Sensors on the UAVs or UGSs may 
stop working, in a more difficult case, fail or degrade with or without obvious symptoms.   

 

Figure 3: Timeline Focus and Event Focus of the Principal Investigators’ Demonstrations

Start End 

Initiation 

Linear Time 

MAS Design Post Analysis
UTAustin 

BBN/MIT 

Metron 

ALPHATECH 

UMass 

Target  
Tracking 
USC/ISI 

Pop-up Targets/Threats 
Reallocate     Reroute

Optimization 
Algorithm Selection 

Stanford

Hampshire

Pop-up 
Targets

Anomaly Detection 

UNewMexico 

Sensor 
Failure
UTAustin

UAV 
Leaves

Metron

UAV 
Returns

ALPHATECH 

Weather 
Disruption 

Combined Autonomous UAV and Sensor Network Static and Moving Target Location and Tracking 
ALPHATECH Dartmouth UIUC 

Dynamic Adaptive Learning 
Santa Fe Institute 

Hardware 



 

41 

 

5 The BAE SYSTEMS Advanced Information Technologies 
Demonstration 

AIT (formerly ALPHATECH, INC) presented two demonstrations at the project-wide TASK 
OEF Demonstration in August 2004.  One demonstrated the algorithmic details of the research 
on minimizing unsurveyed target’s lifetimes discussed in Section 2.  This software-based 
demonstration employed AIT’s Testbed for Taskable Agent Systems (TTAS), developed under 
the TASK program, to demonstrate the algorithms in operation.  In the second AIT implemented 
and demonstrated these same algorithms on real robotic systems.  To this hardware-based 
demonstration, AIT added a sensor network composed of MICA2 Motes, developed under the 
DARPA NEST program, that collaboratively localized target locations and communicated the 
localization to the robots.  This section contains a description of the second demonstration. 
 
5.1 Overview of the AIT Hardware-based Demonstration 
The purposes of the research effort behind AIT’s hardware-based demonstration was first to 
investigate the performance of Coordinated Task Scheduling (CTS) algorithm, discussed in 
Section 2, within a multi-agent system of autonomous, coordinating robots and second to 
examine implementing a complex algorithm such as CTS in a realistic hardware environment.  
Because of time constraints, AIT confined its hardware-based investigations to the Stationary 
Targets and Cross-mission Tasking surveillance problems of the OEF – problems UAV-S (1) 
and UAV-S (2) – which fit easily within the demonstration scenario. 
 
The robotic multi-agent system used by AIT was composed of three ActivMedia Pioneer 2 DXe 
robots, which acted as stand-ins for the UAVs.  The robots came equipped as follows: 
 On-board Pentium III 800 Mhz computer, 256 Kbytes RAM, 10 Gig Harddrive 
 802.11b wireless Ethernet communications 
 SICK laser scanning, range measurements 
 On-board video camera 
 Frame grabber with software recognizes color and can navigate with respect to color 
 Forward looking sonar 
 Inertial components, compass/inclinometer to supplement wheel odometer and direction 

readings 
 The Linux operating system 
 ARIA: a low-level multi-threaded robotics server and software library that provides summary 

navigation commands, obstacle avoidance, health and safety, Ethernet communications, map 
navigation, video camera and frame grabber control, etc. 

 Additional ActivMedia software for automated robot localization and navigation through 
sonar and laser readings and map comparisons 

 
AIT implemented the CTS algorithm in the native C++ of the ActivMedia ARIA libraries and 
integrated it with the ARIA libraries and other ActivMedia software.  By using the ActivMedia 
libraries and software for robot localization, navigation between waypoints, obstacle avoidance, 
camera control, and communications, AIT concentrated its effort on the essential TASK related 
research efforts.   
 
 



 

42 

 

Power 
Switches 
Recharge 

Sonar 

Video Camera

Laser 

802.11b 

On-board 
Computer

Controller

Electronic 
Compass

The demonstration scenario for the ActivMedia robotic multi-agent system was the following: 
1. Establish and map a physical environment with navigation reference points  

Figure 4: ActivMedia Pioneer 2-DXe 

2. Add obstacles 
3. Place targets at known locations, some of which require cross-mission tasking, that is, two 

robots must observe the target simultaneously 
4. Occasionally have the base-station announce via 802.11 the target locations to the robots, 

who apply the CTS algorithm to determine navigation waypoints 
5. The robot navigates towards the first waypoint indicated by the CTS algorithm and avoids 

obstacles that its laser and sonar readings indicate are in its path 
6. When a robot, through its localization algorithms, decides it is near a target, use the video 

camera and the color tracking software to complete moving to the target 
7. Fill the video frame with the target, and transmit a video of the target to the base-station 
8. Occasionally add new targets and repeat the announcements 
9. When a robot encounters a cross-mission task, coordinate with another robot to arrive at the 

target from two different directions and provide simultaneous video of the target 
 



 

43 

 

Each MICA2 Mote1, twenty of which form the UGS network for the AIT demonstration, is 
composed of two connected boards.  One board holds a microprocessor, FM transceiver, AD 
converter, UART, parallel connector for programming, serial connector for data transfer, and 
holder for two AA batteries.  The other holds sensors and plugs into the first by a 51 pin 
connector.  The microprocessor has the following characteristics: 

 Atmel ATmega 128L 
 512K bytes flash memory for programs 
 4K bytes EEPROM; AD 10 bit, 8 channel 
 Other interfaces DIO, I2C, SPI 
 Current draw 8mA active mode , < 15 µA sleep mode 

The transceiver has the following characteristics: 
 ChipCon CC1000 
 Center Frequency 868 or 916 MHz 
 Number of Channels > 4, > 50 programmable and country specific 
 Data Rate 38.4 Kbaud 
 RF Power -20 to +5 dBm programmable 
 Receiver sensitivity -98 dBm 
 Outdoor range 500 ft line-line-of-sight with external 1/4 wave dipole antenna 
 Current draw 27mA at maximum transmit power, 10 mA receive, < 1 µA sleep 

The system can use many different sensors.  The particular sensor board that AIT used has the 
following sensors: 

 Photocell 
 Thermistor 
 Microphone 
 2-Axis Magnetometer 
 2-Axis Accelerometer 

Experiments demonstrated that the microphone sensor and an acoustic target were most effective 
for the TASK OEF demonstration. 

 

Figure 5: MICA2 Mote and Sensor Board 

A project supported by the DARPA NEST program and Intel at the University of California 
Berkeley2 developed a programming language nesC, which is an extension to the C 
programming language, and a real-time, event driven operating system TinyOS for the MICA2 

                                                 
1 AIT purchased the MICA2 Motes from Crossbow, Inc., http://www.xbow.com. 
2 Details are available at http://webs.cs.berkeley.edu/. 

Mica2 Mote 
Transceiver-Microprocessor Sensor Board 



 

44 

 

Motes.  The language and operating system have libraries that control all the Mote hardware and 
provide related high-level application programming interfaces to application designers and 
programmers.  AIT designed and implemented software agents that reside on the Motes and 
coordinate to localize acoustic targets. 
 
The demonstration scenario for the MICA2 Motes UGS network was as follows: 
1. Place the Motes at known locations within the physical environment 
2. Send a message to each Motes that tells it its location 
3. Broadcast the command to all Motes to determine that they are to find their four nearest 

neighbors 
4. Sound an acoustic target within the physical space covered by the UGS network 
5. The Motes who heard the target exchange detection and non-detection messages with their 

neighbors 
6. Each Motes uses a geometric algorithm to compute the geometric block in which the acoustic 

target is located and refines the computation by message exchanges with its neighbors 
7. The block location of the target is broadcast throughout the network 

Figure 6: A robot performing video surveillance of a target with an acoustic UGS in the 
foreground. 

To enable the ActivMedia robot multi-agent system and the MICA2 Mote UGS network, AIT 
integrated a Mica2 Mote transceiver-microprocessor board with each robot’s on-board computer 
and designed and implemented software that allows the two to communicate.  The two multi-
agent systems communicate through this interface.  The following steps complete the 
demonstration scenario: 
8. A robot queries the UGS network for possible acoustic targets locations 



 

45 

 

9. The robot passes the coordinates of a corner of the target locale block to its on-board CTS 
algorithm, which computes a new set of waypoint that are optimized to minimize unserveyed 
target lifetimes 

10. The robot navigates to the target locale and uses the ActivMedia color tracking software to 
locate the target. 

 
 


